
..

UnifiedUnified ModelModel
DocumentationDocumentation PaperPaper No.No. 33

SOFTWARESOFTWARE STANDARDSSTANDARDS
forfor thethe

UNIFIEDUNIFIED MODEL:MODEL:
FORTRANFORTRAN

andand
UNIXUNIX

Version 7.2
5/2/98

Phillip Andrews

Model version 4.4

Numerical Weather Prediction
Meteorological Office

London Road
BRACKNELL

Berkshire
RG12 2SZ

United Kingdom

(c) Crown Copyright 1998

This document has not been published. Permission to quote from it must be obtained
from the Head of Numerical Modelling at the above address.

Modification Record

Document
version Author Description....................

7.1 M.Hatton Subroutine modification histories to contain
Unified model version number, not
subroutine version number. The previous
version 7 does not need to be kept as usual
(for the use of external users who may be
using old model versions) because subroutine
versions were never regarded as correct
practice since the issue of version 7. Some
locations of internal Met.Office files have
been corrected; the old locations do not exist
any more, and so were useless information.

7.2 M.Hatton Removal of system component and task
numbers from headers. Removal of
instructions about writing external
documentataion.

Contents:

1.0 Introduction

2.0 General Routine Standards

3.0 Control Level Standards

4.0 Comdeck Standards

5.0 Unix Script Standards

6.0 Code reviews

7.0 QA Fortran

8.0 Nupdate

Appendix A: Concise Fortran standards summary

Appendix B: Standard Fortran header for general subroutines

Appendix C: Very simple example Fortran subroutine

1.0 Introduction
This document specifies the software standards to be used when writing new routines

for the Unified Model (UM). When making extensive changes to an existing routine a rewrite
should be done to ensure that the routine meets these standards. An exception is that there
is no requirement to rewrite imported code to these standards before it can be included in the
UM. Where imported code has its own software standards modifications to that code should
follow those original standards, ensuring that within a single routine only one set of standards
is followed. New routines for imported code should follow these standards. The standards set
out here are based on previous UM software standards, but are somewhat more detailed and
do deviate from them in one or two instances. A modern programming style has been
adopted, similar to that which we should use for Fortran 90. This is to help simplify the
transition to the new language. Use is made of commonly found extensions to FORTRAN 77
which are also in the fortran 90 standard.

In the UM, code is divided into control and meteorological routines. Comdecks,
provided by the nupdate precompiler, are used for global variables. These are all covered by
this standards document.

The plug compatibility rules for routines dealing with physical parameterizations
detailed in "Rules for Interchange of Physical Parameterizations" Kalnay et al. 1989 , Bull.
A.M.S. 70 No. 6 p 620 are included in the standards defined here.

1.1 Why Have Standards?
This document is intended for new computer users as well as experienced

programmers, so a few words about why there is a need for software standards at all may be
in order. The aim of software standards is to reduce portability and maintainability problems.
Remember that software should be written for people and not just for computers! As long as
the syntax rules of the programming language (eg FORTRAN 77) are followed the computer
does not care how the code is written: you could use archaic language structures; add no
comments; leave no spaces etc. However, another programmer trying to use, maintain or alter
the code certainly does care. A little extra effort whilst writing the code can greatly simplify
the task of this other programmer (which might actually be the original author a year or so
after writing the code when details of it are bound to have been forgotten). In addition,
following these standards may well help you to write better, more efficient, programs
containing fewer bugs.

1.2 Units
All routines & documentation must be written using SI units. Standard SI prefixes may

be used. Where relevant, the units used must be clearly stated in both code and
documentation.

The standard SI prefixes are:

Prefix Symbol Multiplication Factor
tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deca da 101

deci d 10-1

centi c 10-2

milli m 10-3

micro µ 10-6

nano n 10-9

pico p 10-12

femto f 10-15

atto a 10-18

1.3 Code Development Stages
The preparation of new routines and of changes to existing routines should, in

principle, go through all the following stages:

a) Plain language specification of purpose
i.e. specify what needs to be done.

b) Draft documentation (scientific &/ or technical)
i.e. decide how to do it.

c) Program design
i.e. decide how to implement the solution.

d) Code written (review first routine to check adherence to standards)
i.e. code it.

e) Code working

i.e. bugs removed.

f) Code tested/ evaluated
i.e. make sure the change was worth while / beneficial.

f) Code reviewed
i) Code tested/ evaluated

i.e. make sure the change was worth while / beneficial, and has no
unexpected/ undesirable side effects.

ii) Software standards check

i.e. make sure software standards are adhered to.

iii) Finalization of documentation
i.e. make sure it is up to date and correct.

i) Code accepted into the UM
- once any changes requested by the reviewer have been made & checked.

In practice not all stages will be relevant for all changes e.g. a bug fix, or tidying up
maintenance task may not necessarily require alteration of the documentation.

1.4 The Rest of this Document
Details of the standards are given in section 2; section 3 contains modifications for

control routines; and section 4 for comdecks. A concise summary is given in appendix A.
Section 5 sets out standards for writing unix scripts. Section 6 makes a recommendation for
monitoring the application of the standards, whilst section 7 considers QA Fortran, and
section 8 makes a recommendation for the removal of nupdate commands. Appendix A
contains a concise summary of the Fortran standards. The standard template subroutine header
is reproduced (with minor alterations to make it fit an A4 page) in appendix B, and a very
simple example Fortran met. subroutine is given in appendix C.

2.0 Standards for General Routines
2.1 Fortran 90 Compatibility Rules

The rules in this section are to make the code look as similar to fortran 90 as possible,
though many could have been included on readability grounds alone. For full explanations of
the rules specified in this section see books on Fortran 90 such as "Fortran 90 Explained" by
Metcalf & Reid; "Programmers Guide to Fortran 90" by Brainerd, Goldberg & Adams; or our
own in house document "Introduction to Fortran 90" by Hibling & Wardle.

2.1.1 The only symbol to be used as a continuation line marker is &.

2.1.2 The only symbol to be used for comments is !. Exception: Cray compiler directives and
NUPDATE commands will have to remain as they are (or they wont work!).

2.1.3 Avoid using archaic FORTRAN 77 features and features deprecated Fortran 90.

2.1.3.1 Avoid COMMON blocks - use argument lists to pass variables into subroutines.

2.1.3.2 Avoid use of the EQUIVALENCE statement: only use them as a last resort.

2.1.3.3 Never use the PAUSE statement.

2.1.3.4 Never use assigned or computed GO TO statements.

2.1.3.5 Never use arithmetic IF statements.

2.1.4 Avoid using numeric LABELS wherever possible:

2.1.4.1 Loops MUST be terminated with an END DO statement. To improve the clarity of
program structure you can optionally add comments after the Do & End do statements e.g.

Do i = 1, 100
Do j = 1, 10

...code statements...

End do !j
End do !i

Use of comments like these (possibly with more detail) is required for both large DO
loops and large IF blocks i.e. those spanning 15 lines or more.

2.1.4.2 Never use a FORMAT statement: they require the use of labels, and obscure the
meaning of the I/O statement. The formatting information can be placed explicitly within the
READ, WRITE or PRINT statement, or be assigned to a CHARACTER variable in a
PARAMETER statement in the header of the routine for later use in IO statements. Never
place output text within the format specifier: i.e. only format information may be placed
within the FMT= part of an I/O statement, all variables and literals, including any character
literals, must be ’arguments’ of the I/O routine itself. This improves readability by clearly
separating what is to be read/ written from how to read/ write it.

2.1.4.3 Avoid the use of the GO TO statement.

2.1.4.3.1 Never use a GO TO to jump upwards in the code.
2.1.4.3.2 A GO TO may only jump to a CONTINUE statement. Note: this deliberately differs
from the previous UM standard as it allows code, for example to report that an error has
occurred, to be placed before the RETURN statement.

2.1.4.3.3 All GO TO’s must be commented to explain why it is there and what it is doing.

2.1.4.3.4 An acceptable use of GO TO is to jump to the end of a routine after the detection
of an error, in which case you must use 9999 as the label (then everyone will understand what
GO TO 9999 means).With Fortran 90 this will be the only acceptable use of GO TO and
even so this use should be restricted to situations where other coding techniques, such as If
tests on ErrorStatus around blocks of code, are too unwieldy to be used.

2.1.5 Code should be restricted to 72 columns for the sake of being able to read the code on
any VDU; reading nupdate line numbers etc...

2.1.6 Never access arrays outside of their declared bounds - the results are unpredictable and
often undesirable.

2.2 General style rules
The rules in this section are designed to improve the readability of the code and to

reduce the differences in the look of code produced by different programmers. Both are
intended to reduce the overheads involved in maintaining or altering another programmers
code. The ’golden rule’ is to be consistent.

2.2.1 Use meaningful variable names (but do try to keep them reasonably short!).

2.2.2 Write well structured code making use of subroutines to separate specific subtasks. In
particular all file I/O should be done through subroutines: this greatly facilitates the portability
of the code. I/O to standard input/ output should use * rather than hard wired unit numbers.
Subroutines should be kept reasonably short, say up to about 100 lines of executable code,
but don’t forget there are start up overheads involved in calling an external subroutine so they
should do a reasonable amount of work.

2.2.3 Code does NOT HAVE TO BE WRITTEN IN UPPER CASE ONLY and in fact it
does get a little wearing to be shouted at by uppercase only code. It is better to use case to
emphasize the structure of the code (as in the Do loop example of 2.1.4.1). This is very

similar to the use of capitols at the start of sentences in English, and when combined with
meaningful variable names can greatly enhance the readability of the code. You can also use
case instead of _ to make meaningful variable names more readable e.g. input_file could be
written as InputFile.

2.2.4 Indent code within Do, Do while and If blocks by 2 characters (OK 2 is arbitrary but
we may as well all use the same number!).

2.2.4.1 Continuation lines should also be indented: either by 2 characters; or to ensure that
equations line up in a readable manner, as appropriate.

2.2.4.2 Comments should also be indented to follow the structure of the code, but by one less
character to make them more easily identifiable. You cant put ! in column 6 as it will be
interpreted as a continuation line marker, so start comments in column 1 for unindented code.

2.2.5 Use blank space sensibly to improve readability. This takes very little effort but can
make a big difference to readability. Leave blank characters between variables and operators;
try to line up related code into columns.

For example, instead of:
! Initialize variables

x=1
MeaningfulName=3
RealNumber=5.0

write:

! Initialize variables
x = 1
MeaningfulName = 3
RealNumber = 5.0

Similarly use blank lines to improve readability and to emphasize code structure: for example
leave a blank line before a comment line; leave a blank line before an End do, Else, Else if,
or End if statement (or before the first of a series of these statements as in the Do example
of 2.1.4.1) as this again helps to emphasize the code structure. For example:

! Start of example code
... code statements...

! Example If block
If (IntVariable .eq. SomeValue) then

! an indented comment
Do Loop = 1, EndLoop

! another indented comment
... code statements...

End do
Else if (IntVariable .eq. SomeOtherValue) then
! another indented comment
... code statements ...

End if

2.2.5.1 Standardization of Fortran statements: it greatly simplifies global searches if

programmers are consistent in their use of spaces in FORTRAN keywords. Thus GO TO,
ELSE IF, END IF , END DO etc may each be written either as two words separated by one
blank character, or as single ’words’, but within a particular program unit the usage must be
consistent.

2.2.6 Only use block If statements i.e. always use ‘then’ and ‘End if’, as this improves the
readability of the code.

2.2.7 All subroutines must have only one entry and only one exit point.

2.2.8 Functions should never alter their arguments (i.e. all arguments must be intent in).

2.2.9 Subroutine naming conventions. This is related to the UM submodel project, which aims
to split the UM into independently callable submodels. The names of all subroutines within
a given submodel (or possibly sub task within a submodel) will be given the same short (2
character) prefix, to be separated from the rest of the name by an underscore. This makes the
purpose of routines much more obvious; clearly identifies related routines; and drastically
reduces the chance of name clashes within the UM. Deck names should use the same prefix
but without the underscore.

2.2.10 Never use STOP statements: if errors are detected make a controlled exit from the
routine (see 2.1.4.3).

2.2.11 Always use the generic names of intrinsic functions. These are often more meaningful
and it reduces the number of names to learn.

2.2.12 Avoid the use of ’magic numbers’ that is numeric constants hard wired into the code.
These are very hard to maintain and obscure the function of the code. It is much better to
assign the ’magic number’ to a variable or constant with a meaningful name and then to use
this throughout the code. In many cases the variable will be assigned in a top level control
routine and passed down usually via the argument list but possibly via a comdeck. This
ensures that all subroutines will use the correct value of the numeric constant and that
alteration of it in one place will be propagated to all its occurrences. Unless the value needs
to be alterable whilst the program is running (e.g. is altered via I/O such as a namelist) the
assignment in the top level routine should be made using a PARAMETER statement.
For example, instead of writing:

If (ObsType .eq. 3) then

specify in the header local parameter section:
INTEGER SurfaceWind !Obs type No for surface wind

PARAMETER (SurfaceWind = 3)

and then write:
If (ObsType .eq. SurfaceWind) then

2.2.13 Guidance for commenting

2.2.13.1 Comment freely.

2.2.13.2 Use comments to say what a particular section of code is doing. These comments
should be numbered sequentially: 1.0, 2.0 etc for main sections; use the number after the .
to sequentially number subsections of a main section. These comments should refer to
particular equations in documentation papers.

2.2.13.3 Also use comments to tell another programmer what is being done e.g. work array
now holds geopotential values; this loop does ... etc.

2.2.13.4 Place comments either on the same line as the code they are commenting on, or on
the line immediately before it.

2.2.14 When calling subroutines, add comments to show the intent of the subroutine’s
arguments. For example, a call to the subroutine Example of appendix B might look like:

Call Example (
& x_len, y_len, constant, work1, work2, ! Intent (In)
& answer) ! Intent (Out)

2.2.15 Do not leave tab characters in your code: replace them with the appropriate number
of spaces. This will ensure that the code looks as intended when ported and also will avoid
potential compilation problems.

2.3 Subroutine & Function Standard Headers
Headers are an immensely important part of any code as they document what it

does, and how it does it. You should write as much of the header as possible BEFORE
writing the code, as this will focus your mind wonderfully on what you are doing and how
you intend to do it! I have provided template subroutine and function headers: it is a
requirement of these standards to use them. They are kept under
http://fr0800/umdoc/header.templates/ in the form umshed* and umfhed*

2.3.1 Within (but only within) the header of a routine Fortran statements (but not variable
names) must be written in upper case.

2.3.2 The standard template for subroutine headers is reproduced in appendix B of this
document. Text within the triangular < > brackets are to be replaced by the user
appropriately. The header is divided into two parts. The first part (up to the "! Global
variables" line) must be completed in its entirety. Unused sections in the second part (the
"! Global variables" line and after) may be deleted e.g. if there are no parameters local to
the subroutine, then delete the Local parameters heading. Of course the heading must be
reinstated if a local parameter is added at some later stage.

2.3.3 All variables must be declared, and commented with a brief description. This
increases understandability and reduces errors caused by misspellings of variables.

2.3.3.1 The IMPLICIT NONE statement ensures that all variables must be declared and
must be used.

2.3.3.3 Subroutine arguments must be declared in the same order in the header as they
appear in the subroutine statement. This order is not random but is determined by intent,
variable dimensions and variable type. All input arguments come first, followed by all
input/output arguments and finally by all output arguments. Within each intent all scalar
arguments must come before all array arguments. Within each of these divisions
arguments must be in the same manner as specified in section 2.3.3.4. The comment for
input/ output arguments must say what the argument is on both entry to and exit from the
routine.

2.3.3.4 Within each section of part 2 of the header, variables of a given type should be
grouped together. These groups must be declared in the order Integer, Real, Logical and
then Character, with each grouping separated by a blank line. In general variables should
be declared one per line, followed by a comment describing the variable and its purpose.

Use a separate type statement for each line as this makes it easier to copy code around
(you can always use the editor to repeat a line to save typing the type statement again)
and prevents you from running out of continuation lines. For example a section of part 2
of the header might look like the following:

...
! Local Parameters:

INTEGER InputUnit !Unit number for input file
PARAMETER (InputUnit = 23)

! Local scalars:
INTEGER IntValue1 !First integer variable

!in example header
INTEGER IntValue2 !Second integer variable

!in example header

REAL RealValue !A variable of type real

! Local dynamic arrays:
REAL InputData(size) !Array for data read from

!input file.
...

2.3.4 Never use a separate DIMENSION statement. Array sizes should be declared in the type
statement (as shown in the example of section 2.3.3.4).
2.3.5 History:
2.3.5.1 Add a new line to the History section when modifying existing code. This should
include the date of the modification and a brief comment detailing the changes as well as the
name of the person making the changes.

2.3.5.2 Version numbering: during the development phase of a project it may be helpful to
use version numbers specific to each routine. When development is over & the code is ready
for operational use then this header entry must contain the UM version number at which the
change is put into the UM.

2.4 Error reporting
When it is possible that errors may occur, they should be detected and appropriate

action taken. Errors may be of 2 types: fatal errors requiring program termination; and non
fatal errors, which don’t.

2.4.1 ErrorStatus
2.4.1.1 ErrorStatus is an integer variable used to store the current error state. A value of 0
means no (fatal) error, whilst a positive non zero value means a fatal error has occurred.
Negative values are used for non fatal errors.

2.4.1.2 ErrorStatus should only be used by a routine if the value of ErrorStatus could change
in that routine or in any routine called by it.

2.4.1.3 All routines which use ErrorStatus should check its value on entry (as a double check
in case the calling routine failed to check for a bad ErrorStatus) and after any process which
could change its value. A controlled exit should be made if a positive value is detected,
possibly by following the procedure outlined in section 2.1.4.3.

2.4.1.4 Strictly speaking ErrorStatus is an IN/OUT variable. However, it is probably clearer
to separate it from the other variables in the argument list. So, in an exception to the normal
ordering rules for subroutine arguments, if present ErrorStatus must be the last variable in an

argument list.

2.4.1.5 On the initial detection of a fatal error the value of ErrorStatus must be set to a non
zero positive value (+1).

2.4.1.6 On the initial detection of a non fatal error, ErrorStatus may be set to any non zero
negative value. This value may then be used by the calling routine to take appropriate action.
2.4.2 ErrorReport
2.4.2.1 Once the nature of the error has been determined ErrorReport must be called with an
appropriate ErrorMessage. ErrorReport will reset negative ErrorStatus values to zero.

2.4.2.2 The arguments of ErrorReport are:

Call ErrorReport (NoOfLines, NameOfRoutine, ErrorMessage,
& ErrorStatus)

! Scalar arguments with intent(in):
INTEGER NoOfLines !Number of lines of output in

!ErrorMessage.
CHARACTER*40 NameOfRoutine !Name of the routine calling

!ErrorReport.
! Array arguments with intent(in):
CHARACTER*80 ErrorMessage(NoOfLines)!Text for output.

! ErrorStatus
INTEGER ErrorStatus

ErrorReport writes an error message consisting of the type of error: fatal (ErrorStatus +ve) or
warning (ErrorStatus -ve); the name of the calling routine; and ErrorMessage. It also resets
ErrorStatus to zero if it was -ve on input. At present ErrorReport merely writes to standard
output but this could easily be extended, such as directing output to any user specified file,
should the need arise.

2.4.2.3 All routines using ErrorStatus should check for a +ve value before exiting, calling
ErrorTrace (usually with a blank message) if true. This will provide a trace back mechanism
showing the calling tree to the routine which reported the error.

2.4.3 ErrorTrace is a routine used to provide a calling tree on detection of an error.i

2.4.3.1 All routines using ErrorStatus should check for a +ve value before exiting, calling
ErrorTrace (usually with a blank message) if true e.g.

If (ErrorStatus .gt. 0) then
Call ErrorTrace ("NameOfRoutine", " ")

End if

2.4.3.2 The arguments of ErrorTrace are:

Call ErrorTrace ("NameOfRoutine", "message")

! Scalar arguments with intent(in):
CHARACTER*40 NameOfRoutine !Name of the routine calling

!ErrorTrace
CHARACTER*80 message !A one line message

The character variable message can be used to report additional information. For example,
if the error occurred in a subroutine called inside a loop, message could be used to output
the value of the loop counter.

2.4.4 Location of ErrorReport & ErrorTrace:
These will be included in the UM at version 3.4. Until then, they may be used by including
the following modset:

um1.prmod304.mods(PA110394)

2.5 Plug Compatibility Rules
2.5.1 A package shall refer only to its own subprograms and to the intrinsic functions included
in the ANSI FORTRAN 77 standard.

2.5.2 A package shall provide separate set-up and running procedures, each with a single entry
point. All initialization of static data must be done in the set-up procedure. The running
procedure must not alter these values.

2.5.3 All communication with the package shall be through the argument list at the entry
points.

2.5.4 The package must not use unnamed (blank) common.

2.5.5 The horizontal index shall be the innermost of FORTRAN arrays. The range of this index
processed on each call shall be specifiable via the argument list.

2.5.6 The number of vertical levels the package uses shall be specifiable via the argument
list.

2.5.7 All dimensions of dummy argument arrays must appear in the argument list.

2.5.8 All I/O from the package must be limited to diagnostic output written to FORTRAN
units specified in the argument list.

3.0 Control Routine Standards
These are essentially the same as given in section 2 for general routines, but are where

most of the features to be avoided will occur such as the use of EQUIVALENCE or of
COMMON blocks. It is also at this level that physics packages must meet the plug
compatibility rules, in which all model variables are required to be passed by argument.

As a requirement for dynamic allocation of primary data arrays within the model it is
necessary to pass lists of arrays by argument down through several levels of control routines
before the meteorological routines are accessed. The lists of arrays and their type declarations
should be defined by *COMDECKs to ensure that recognizable blocks of information are
common throughout the control structure and to facilitate maintenance. Each list of arrays
associated with a functional component used extensively throughout the model (such as
diagnostic processing) is described by *CALL ARGxxxx with a corresponding type declaration
*CALL TYPxxxx. In addition, the number of arguments passed at the top control level should
be minimized by the combining arrays into ’super arrays’. See UM Documentation Paper C1:
’Dynamic allocation of primary fields’ for more information.

4.0 Comdeck Standards

These are blocks of declarations of global variables and constants. Comdecks declaring
physical constants may be called by any routine, but most other comdecks will be called only
by control routines. Comdecks should follow the standards set out in section 2 as much as
possible, but have their own standard templates under http://fr0800/umdoc/header.templates/
of the form umcomd* .

5.0 Unix Script Standards
This standard covers UM UNICOS shell scripts which are used in the operational suite.

This includes the automatic output processing subsystem and Operational Suite scripts. The
requirements that this standard is intended to meet are as follows:

i) The script should be easily understood and used, and should be easy for a programmer other
than the original author to modify.

ii) To simplify portability it should conform to the unix standard as much as possible, and
exclude obsolescent and implementation-specific features when possible.

iii) It should be written in an efficient way.

iv) The structure of the script should conform to the design agreed in the project plan.

5.1 External Documentation of scripts
Scripts are to be regarded as being control code as far as external documentation is

concerned.

5.2 Coding of scripts
Wherever possible the style and philosophy of the Fortran standards should be applied

when writing unix /unicos scripts.

5.2.1 Scripts must use the standard script header, at 4.3 this is under
http://fr0800/umdoc/header.templates/ of the form umscrpt*

5.2.2 The Bourne shell should be used unless this is impossible without compromising
efficiency.

5.2.3 The logical structure of the script is to be determined by for, if, while, until and case
constructs.

5.2.4 The first section of each script must initialize the local environment variables.

5.2.5 Error exits must return an explicit error code via "exit £E_COND", where E_COND is
an environment variable described in a header comment and set either in the initialisation
section of the script or is imported.

5.2.6 Error return codes from lower level scripts or executables are to be checked, with
appropriate action taken in the event of an error.

6.0 Code reviews
In order to ensure that these standards are adhered to and are achieving the desired

effect code reviews must be held. Reviews can also be useful in disseminating computing
skills. To this end two types of code review are proposed: the first, to be called simply a code
review, is a preacceptance check that the code accomplishes the specified task, and adheres to
the software standards set in this document. See section 6.1 for a full description of the
reviewer’s duties.

The second type of review is a group code review. These group code reviews should
be attended by several programmers working in the same area (e.g. on the same project) and
act as a mini workshop on software design and implementation allowing us to learn good
programming techniques from each other. Clearly not too much time should be spent holding
group code reviews so the following schedule is proposed. The first routine written under these
standards by each programmer should be group reviewed. This should pick up any problems,
misinterpretation of the rules etc. quickly, and therefore simplify their correction. It will also
ensure that people new to the office are made aware of these standards from the start.
Subsequent reviews should be held at regular, say 6 monthly, intervals with the programmer
chosen on a rota basis from the code review group.

6.1 Instructions for Reviewers
Essentially reviewers must complete stage f) of section 1.3.

6.1.1 Reviewers must understand the routine or section under review and work through the
logic to check that it fulfils the aims set out for the modification.

6.1.2 Reviewers must ensure that the updated code is written to the standards specified in this
document.

6.1.3 Reviewers must ensure that the inline documentation describes the updated code.

6.1.4 Reviewers must ensure that external documentation is updated as necessary.

6.1.5 Reviewers must check that the modified code has been tested and any significant increase
in memory usage or cpu time noted, and that this is communicated to the project management
before acceptance of the code.

6.1.6 Disagreements: the reviewer can request evidence of tests and listings as necessary, and
can demand action on non-observance of the above rules. The reviewer can make other
comments as desired and in the case of disagreements these should be referred to project
management for a decision on their implementation.

7.0 QA Fortran
QA Fortran is a potentially useful tool which you should run your Fortran routines

through even if you (currently) decide to ignore some (possibly a large number) of its
comments. Central computing are currently investigating ways of tailoring QA Fortran to test
for compliance with the standards specified in this document. This would greatly enhance the
value of QA Fortran. An examination of the QA Fortran report on your code should be a part
of the code review (of either type).

8.0 Nupdate
Nupdate is an unsupported Cray product for managing code. It is currently extensively

used throughout the UM. Clearly this causes portability problems and poses long term
maintenance problems for the UM. Nupdate is used for two main purposes: as a preprocessor
and as a code change management system. The preprocessor provides two main calls: *CALL
which is very similar to the FORTRAN statement INCLUDE and so doesn’t pose too many
problems; and *IF, which provides a means of selecting (or deselecting) parts of the code for
compilation. Use of *IF should be avoided as much as possible. In particular it should not be
used when a FORTRAN IF statement could be used instead. To help with this a comdeck,
C_GLOBAL, containing the INTEGER variable ModelType and the INTEGER parameters
GlobalModel and LimitedAreaModel to test ModelType against, has been provided. Use of
*IF to select different declarations or argument lists for global and limited area runs is strongly
discouraged.

Appendix A: Concise Rules Summary
The rules discussed in the main text are reproduced here in summary form.

Numbers in brackets after the rule refer to the appropriate section of the main text. The
letter x has been used to represent any integer in one or two of these referrals.

1.0 Continuation line marker must be & (2.1).
2.0 Comments
2.1 The comment symbol must be ! (2.1.2).
2.2 Comments should be indented with the code and a blank line should be left before
(but

not after) the comment line (2.2.5).
2.3 Comments should be used freely, and for 2 main purposes (2.2.13).
2.3.1 Numbered comments to say what a particular section, or subsection, of code is

doing.
2.3.2 Comments to explain what is going on to another programmer reading the code.
3.0 Avoid archaic FORTRAN 77 features (2.1.3).
3.1 Never use PAUSE; assigned GO TO; arithmetic IF.
3.2 Avoid use of COMMON; EQUIVALENCE; DO WHILE.
4.0 Avoid labels (2.1.4.x).
4.1 Terminate loops with END DO
4.2 Never use FORMAT
4.3 Avoid use of GO TO (2.1.4.3.x).
4.3.1 Only jump to a CONTINUE statement.
4.3.2 Error trapping must use the label 9999.
5.0 For now, restrict line lengths to 80 columns (2.1.5).
6.0 Use meaningful variable names (2.2.1, 2.2.3).
7.0 Use case sensibly (2.2.3).
8.0 Use blank space sensibly (2.2.5).
9.0 Indent code within DO or IF blocks by 2 characters (2.2.4).
9.1 Only use block IF statements (2.2.6).
10.0 Avoid using "magic numbers" (2.2.12).
11.0 Only use the generic names of intrinsic functions (2.2.11).
12.0 Subprograms
12.1 Can have only one entry & only one exit point (2.2.7).
12.2 Functions must not alter variables passed to them via their argument list (2.2.8).
12.3 Use the naming convention (2.2.9).
12.4 Use standard subroutine headers (2.3.x).
12.4.1 Uppercase only fortran keywords within the header.
12.4.2 Use implicit none.
12.4.3 Use the correct order for variables in argument list.
12.4.4 Declare arguments in same order as in argument list.
12.4.5 Declare arguments & variables in the correct manner.
12.4.7 Fill in other header items.
12.5 Use comments to show the intent of subroutine arguments in a CALL to a

subroutine (2.2.14).
13.0 Error reporting (2.3).
13.1 Set ErrorStatus to non zero value after fatal error & exit gracefully.

Appendix B: Standard Fortran Header for Met. Subroutines
!+ <A one line description of this subroutine>
! Subroutine Interface:

SUBROUTINE <name(InputArguments, InOutArguments,
& OutputArguments)>
IMPLICIT NONE

! Description:
! <Say what this routine does>
!
! Method:
! <Say how it does it: refer to external documentation>
! <If this routine is very complex, then include a
! "pseudo code" description of it to make its structure
! and method clear>
!
! Current Code Owner: <Name of person owning this code>
!
! History:
! Version Date Comment
! ======= ==== =======
!<Number> <date> Original code. (<Your name>)
!
! Code description:
! FORTRAN 77 + common extensions also in fortran 90.
! This code is written to UM programming standards version 6
!
! Declarations: these are of the form:-
! INTEGER ExampleVariable !Description of variable
!
! Global variables (*CALLed common blocks etc.)

! Subroutine arguments
! Scalar arguments with intent(in):

! Array arguments with intent(in):

! Scalar arguments with intent(InOut):

! Array arguments with intent(InOut):

! Scalar arguments with intent(out):

! Array arguments with intent(out):

! ErrorStatus:
! INTEGER ErrorStatus !+ve = fatal error
! Local parameters:
! Local scalars:
! Local dynamic arrays:
! Function & Subroutine calls:

External
!- End of header

Appendix C: Very Simple Example Fortran Met. Subroutine
!+ Multiplies two 2D arrays together and adds a constant.
!
! Subroutine Interface:

SUBROUTINE Example (x_len, y_len, constant, Input1,
& Input2, Output)
IMPLICIT NONE

!
! Description:
! Noddy routine to multiply two 2 dimensional arrays
! together, and add a constant to the result.
!
! Method:
! The arrays are multiplied element by element, and a
! constant is added to the result.
!
! Current Code Owner: Phil Andrews
!
! History:
! Version Date Comment
! ======= ==== =======
! 3.4 15/10/93 Original code. (Phil Andrews)
!
! Code description:
! FORTRAN 77 + common extensions also in fortran 90.
! This code is written to UM programming standards version 6
!
! Declarations: these are of the form:-
! INTEGER ExampleVariable !Description of variable

! Subroutine arguments
! Scalar arguments with intent(in):

INTEGER x_len !Length of first dimension
!of the arrays.

INTEGER y_len !Length of second dim.
!of the arrays.

REAL constant !Value to be added

! Array arguments with intent(in):
REAL Input1(x_len, y_len) !First input array
REAL Input2(x_len, y_len) !Second input array

! Array arguments with intent(out):
REAL Output(x_len, y_len) !Contains the result

! Local scalars:
INTEGER x !Loop counter over x dim.
INTEGER y !Loop counter over y dim.

! End of header

! 1.0 Start of subroutine code: perform the calculation.
Do y = 1, y_len
Do x = 1, x_len
! Calculate the Output value:
Output(x, y) = (Input1(x, y) * Input2(x, y))

& + constant

End do !x
End do !y

! End of subroutine code.
Return
End

