UNIFIED MODEL DOCUMENTATION PAPER No. 71

SPECIFICATION OF SEA-ICE CONCENTRATION IN THE OPERATIONAL GLOBAL MODEL

C P JONES

Version 1

(To comply with UM version 3.2)

29 November 1993

Numerical Weather Prediction Meteorological Office London Road BRACKNELL Berkshire RG12 2SZ United Kingdom

(c) Crown Copyright 1996

This document has not been published. Permission to quote from it must be obtained from the Head of Numerical Modelling at the above address.

Modification Record			
Document version	Author	Description	

1. INTRODUCTION

This document describes the method by which sea-ice concentration and sea-ice thickness fields are created for use by both the operational global atmospheric model and the operational global wave model. The system is based upon automatically decoding bulletins which originate at the Joint Ice Center, Washington and are sent on the Global Telecommunications System.

Section 2 describes the format of the data and how it is decoded, section 3 describes the programs involved and section 4 gives the operational details.

2. DATA PROCESSING

2.1 Data Source

Sea-ice analyses are performed routinely at the Navy/NOAA Joint Ice Center, Washington with much of the information being derived from satellite data, Kniskern 1991. Several bulletins are produced, including bulletins on icebergs, but only two of the bulletins are of interest here.

The bulletins used are entitled NPLICE and SPLICE which stand for North Polar Ice and South Polar Ice respectively. The bulletin headers are STAC01 for the NPLICE bulletin and STAA01 for the SPLICE bulletin. The issue of these bulletins is weekly, generally on a Tuesday. However, the receipt of these bulletins is slightly unreliable and the validity date of the data is normally the previous Friday. These bulletins are also received on the OMNET system along with other bulletins issued by the JIC.

An example of the bulletins is given in appendix 1. As can be seen, they consist of a list of coordinates where the sea-ice edge has been identified, although the sea-ice concentration criteria for this sea-ice edge is not known (10%?). In the model, the only permitted values of sea-ice concentration are 0 and 1, ie no sea-ice or sea-ice and so if grid point is covered by sea-ice then the sea-ice concentration is set to 1. The bulletins both start and end at Greenwich, a repeated coordinate denotes that the sea-ice terminates against a land mass. The resolution of the data is 30 nautical miles and the sea-ice is always to the left of the line.

2.2 Decoding of Data.

The decoding of the data is simply transforming the given coordinates to the modelgrid. This transformation has been designed to work for any regular lat-long grid resolution.

There are three approximations:-

- 1) The model grid boxes are perfectly square.
- 2) The sea-ice edge is straight between the reported coordinates.
- 3) The earth is locally flat in the area of the reported coordinates.

These approximations have been made to enable use of elementary geometry. Since

we are only concerned whether a model grid point is covered with sea-ice or not, all of these approximations are reasonable and it is unlikely that large errors will be introduced, even when there is a large distance between coordinates. Also, land masses are ignored until the sea-ice edge has been determined and sea-ice filled in behind the edge. As there are slight differences in the working in the two hemispheres, they are described separately below.

In the equations, ϕ denotes latitude, λ denotes longitude and subscripts r, i, o and c denote grid resolution, reported ice edge location grid origin and current location on grid respectively. Variables c and r are used to denote the index to the grid columns and grid rows respectively. When an index is calculated, only the integer part of the number is considered. All longitudes have been converted to degrees east, ie in the range 0 to 360, and latitudes are given in degrees north and south, ie in the range 90 to -90 with the northern hemisphere being positive. In the operational global model the sea-ice concentration is specified on pressure points, therefore $\lambda_o = 0$, $\phi_o = 90.0$ and the current grid resolution is $\lambda_r = 1.25$ and $\phi_r = 0.8333$.

2.2.1 Northern Hemisphere

The data start and ends at the Greenwich Meridian and proceeds in a general easterly direction around the pole with the sea-ice always to the left of the line. The first task is to map the sea-ice edge and the second task is to fill in sea-ice between the pole and the sea-ice edge. The principle behind mapping the sea-ice edge is to set sea-ice at the most equatorward grid point that is behind the reported sea-ice edge.

For any coordinate (λ, ϕ) , the grid reference of the top left grid point, P, is given by,

$$P = (\phi_o - \phi)/\phi_r + 1$$

$$P = (\lambda_o - \lambda)/\lambda_r + 1$$
(2.1)

Assuming that the sea-ice edge is straight, the slope of the sea-ice edge between coordinates i and i+1 is given by,

$$\mathbf{S} = (\phi_{i+1} - \phi_i) / (\lambda_{i+1} - \lambda_i)$$
(2.2)

Let P_{col} of λ_i be c_1 and P_{col} of λ_{i+1} be c_2 , then there exists three possible situations:-

i) $c_1 = c_2$ ie. the sea-ice progression is either poleward or equatorward.

If $\phi_{i+1} < \phi_i$ then the progression is equatorward and the sea-ice edge is set at the coordinate $P(c_2, r_2)$ where r_2 is given by

$$\mathbf{r}_{2} = (\phi_{0} - \phi_{i+1})/\phi_{r} + 1 \tag{2.3}$$

If however $\phi_{i+1} > \phi_i$ then the progression is poleward and the sea-ice edge is set at the coordinate $P(c_1, r_1)$ where r_1 is given by

$$\mathbf{r}_{1} = (\phi_{0} - \phi_{1})/\phi_{r} + 1 \tag{2.4}$$

ii) $c_1 < c_2$ ie. the sea-ice is progressing in the normal easterly direction. In this instance, the procedure is to work between c_1 and c_2 and calculate the latitude at which the sea-ice intersects with each interveaning column of the grid. For each of these columns, c, the sea-ice edge is set at the coordinate P(c,r) where r is given by,

$$\mathbf{r} = (\phi_{0} - (\mathbf{S}(\lambda_{c} - \lambda_{i}) + \phi_{i})) / \phi_{r} + 1 \qquad (c_{1}+1) \leq c \leq c_{2}$$

$$(2.5)$$

If the columns c_1 and c_2 lie either side of the Greenwich Meridian then equation (2.5) is calculated for two ranges,

$$c_1 \leq c \leq N_{col}$$
 and $1 \leq c_2$

where N_{col} is the number of columns on the grid

iii) $c_1 > c_2$ ie. the sea-ice is progression in a westerly direction. The sea-ice edge is set at the coordinate P(c,r) where r is given by,

$$\mathbf{r} = (\phi_0 - (\mathbf{S}(\lambda_c - \lambda_i) + \phi_i))/\phi_r + 2 \qquad (c_2 + 1) \le c \le c_1$$
(2.6)

Again, if c_1 and c_2 lie either side of the Greenwich Meridian equation (2.6) is calculated for two ranges,

$$1 \leq c \leq c_1 \text{ and } c_2 \leq c \leq N_{col}$$

When all coordinates have been processed, a sea-ice edge location should have been set in every grid column. However, a check is made to ensure that this is the case and if any column does not have a sea-ice edge set then it is set equal to column immediately adjacent to the west.

The second stage is to fill in with sea-ice all those points between the reported sea-ice edge and the pole. This stage is different depending on whether an odd or and even number number of sea-ice locations have been assigned to each column in the first stage.

i) Odd number of sea-ice locations identified.

A switch is used, which when on, indicates that a point is to be assigned to be sea-ice. This switch is initialized to be on and, working from the pole to equator, this switch alternates between on and off at every sea-ice edge location encountered. This ensures that all points from the pole to the most poleward sea-ice edge location are set to sea-ice and all points from the most equatorward sea-ice edge location remain free of sea-ice.

ii) Even number of sea-ice locations identified.

In this case, the row numbers of the most poleward and most equatorward sea-ice locations are identified. If two sea-ice edges are in adjacent rows then this is treated as a single sea-ice edge when the sea-ice is filled in. All points between the pole and the most

poleward sea-ice edge location are set to be sea-ice and all points between the most equatorward sea-ice location and the equator remain free of sea-ice. Then the switch, as discussed above, is initialized to be off and working between the rows identified above, the switch alternates between on and off and points set to be sea-ice accordingly.

2.2.2 Southern Hemisphere

The data start and ends at the Greenwich Meridian and proceeds in a general westerly direction around the pole with the sea-ice always to the left of the line. The principle is the same as for the northern hemisphere but the orientation is different as we require the reference of the bottom right grid point releative to the sea-ice coordinate.

The slope of the sea-ice is calculated using equation 2.2. If again P_{col} of λ_i be c_1 and P_{col} of λ_{i+1} be c_2 , then the three possible situations are:-

i) $c_1 = c_2$ ie. the sea-ice progression is either poleward or equatorward.

If $\phi_i < \phi_{i+1}$ then the progression is equatorward and the sea-ice edge is set at the coordinate $P(c_2,r_2)$ where r_2 is given by

$$\mathbf{r}_{2} = (\phi_{0} - \phi_{i+1})/\phi_{r} + 2 \tag{2.7}$$

If however $\phi_i > \phi_{i+1}$ then the progression is poleward and the sea-ice edge is set at the coordinate $P(c_1, r_1)$ where r_1 is given by

$$\mathbf{r}_{1} = (\phi_{0} - \phi_{1})/\phi_{r} + 2 \tag{2.8}$$

ii) $c_2 < c_1$ ie. the sea-ice is progressing in the normal westerly direction. In this instance, the procedure is to work between c_1 and c_2 and calculate the latitude at which the sea-ice intersects with each column of the grid. For each of these columns, c, the sea-ice edge is set at the coordinate P(c,r) where r is given by,

$$\mathbf{r} = (\phi_0 - (\phi_1 - (S(\lambda_1 - \lambda_c))))/\phi_r + 2 \qquad (c_2 + 1) \le c \le c_1$$
(2.9)

If the columns c_1 and c_2 lie either side of the Greenwich Meridian then equation (2.9) is calculated for two ranges,

$$1 \leq c \leq c_1 \text{ and } c_2 \leq c \leq N_{col}$$

iii) $c_2 > c_1$ ie. the sea-ice is progression in a easterly direction. The sea-ice edge is set at the coordinate P(c,r) where r is given by,

$$\mathbf{r} = (\phi_{0} - (\phi_{i} - (S((\lambda_{i} - \lambda_{c}))))/\phi_{r} + 1 \qquad (c_{2} + 1) \le c \le c_{1}$$
(2.10)

If the columns c_1 and c_2 lie either side of the Greenwich Meridian then equation (2.10) is calculated for two ranges,

 $c_1 \leq c \leq N_{col} \text{ and } 1 \leq c \leq c_2$

When all coordinates have been processed, a sea-ice edge location should have been set in every grid column. However, a check is made to ensure that this is the case and if any column does not have a sea-ice edge set then it is set equal to column immediately adjacent to the east. Due to the nature of the southern hemisphere bulletin, a sea-ice edge is not set in column 1 and sometimes a sea-ice edge is not set in column 2 so both these columns have the same data as column 3.

Sea-ice is set at points between the pole and the reported sea-ice edge in the same way as the northern hemisphere.

2.3 Inland Seas/Lakes

These bulletins do not include inland seas or lakes such as the Great Lakes, where specification of sea-ice is nevertheless very important. Data for these areas is provided from the climatological dataset. The areas set from climatology are defined by the boundaries: 67.5 N to 47.0N, 230.0 E to 265.0 E (Slave/Bear Lakes); 50.0 N to 40.0 N, 265.0 E to 285.0 E (Great Lakes); 50.0 N to 30.0 N, 25.0 E to 75.0 E (Eurasian lakes).

2.4 Quality Control

If the sea-ice field has been updated, whether from a bulletin or by climatology, then a basic quality control procedure is performed to attempt to elliminate spurious sea-ice fingers or holes in the sea-ice cover. A point will only remain as sea-ice if at least one of its neighbours is also sea-ice, provided that at least 6 of its neighbours are sea points. A point will become sea-ice if only 1 of its neighbours is also free of sea-ice, providing that at least 6 of its neighbours are sea points. Also, a point is not permitted to freeze if the SST field is above a certain value, prescribed by a variable in the control namelist. These checks ellinmate most, but not all, spurious points. It must be remembered that in coastal waters, where the ocean is relatively shallow, then the sea-ice can have a perculiar pattern.

2.5 Sea-ice Thickness.

A value of sea-ice thickness is set at all points which have a non-zero value of sea-ice. The values set are 2m for the northern hemisphere and 1m for the southern hemisphere.

3. PROGRAM DESCRIPTION

3.1 ICEDAY

This program is run on the CRAY. Its purpose is to decode the sea-ice bulletins and create the sea-ice field for the current day. The program consists of the following members of MS12.CJSSTLIB.SEAICE: CANCINT, C@EDGE, C@FILL, C@MESS, DAYCHK, DAY@NUMB, ICEDAY, ICE@CONV, ICE@INT, ICE@QC, IN@FLDS, OUT@FLDS, MAP@PRT, and OUT@FLDS. The program also uses the following members from the Unified Model librray, UM1.CODExxx.SRCE where xxx is the version number: BUFFIN1A, BUFOUT1A, CHKLOO1A, CHSUNITS, CLOSE1A, C@MDI, IOERR1A, NEWPAC1A, OPEN1A, P21BIT1A, POSERR1A, PRFIXH1A, PRIFLD1A, PRRFLD1A, READFL1A, READHE1A, TINTC1A, TINT1A, WRITFL1A and WRITHE1A. Also members PP@TITL and PR@LOOK are used from MS12.CJSSTLIB.SRCE, these are UM routines but the ones used on the UM library are not used as this would mean the program would need to change at every UM release. However, other changes in the UM may enforce a change and it is advisable that all UM routines are updated to the latest versions periodically.

UM routines are not decribed here, see appropriate UM documentation.

Index to comdecks: CANCINT, CICECRTL - both contain necessary variables for reading in datasets. ICEFLD - holds data field arrays and grid details

Index to program: PROGRAM ICEDAY CALL OPEN (4 times) CALL READHK CALL DAYCHK CALL IN FLDS CALL DAY NUMB CALL ICE CONV CALL DAY NUMB (twice) CALL C_EDGE CALL C FILL CALL ICE INT CALL ICE_QC CALL PR LOOK CALL PR RFLD CALL OUT_FLDS CALL C_MESS CALL CLOSE (4 times)

SUBROUTINE READHK - to read housekeeping file SUBROUTINE IN_FLDS - to read in the daily sea-ice field SUBROUTINE ICE_CONV - to read in and convert to CRAY numbers JIC data SUBROUTINE DAY_NUMB - to calculate the year day number SUBROUTINE C_EDGE - to map the sea-ice edge onto the model grid
SUBROUTINE C_FILL - to fill in sea-ice behind edge
SUBROUTINE ICE_INT - to obtain a time interpolated climatological sea-ice field for the current date
SUBROUTINE ICE_QC - to perform quality control
SUBROUTINE OUT_FLDS - to write out the daily sea-ice field
SUBROUTINE C_MESS - to create a message file

The program is controlled by ICEDAY. First all the ancillary files that are to be used are opened and then all the return codes and namelist variables are initialised. ICE_CONV is called to read in the JIC bulletin that has been transferred from the HDS. The dates of the bulletin are compared with the dates of the previous bulletin, which have been stored in the fixed length header of the daily sea-ice file. If a new bulletin has not been received than a check of the age of the current data is made and if it is greater than 25 days the data is set equal to climatology. If a new bulletin has been received then it is mapped onto the model grid using routines C_EDGE and C_FILL using the equations decsribed above. If there has been a new NPLICE bulletin then the climatological field is read so and the inland seas and lakes decsribed above are set. If the sea-ice field has changed in anyway, either being set from a bulletin or from climatology then a quality check is made to remove spurios fingers and holes in the sea-ice cover. If a new bulletin has not been received and the age of the current data is less than 25 days then no changes will be made to the sea-ice field. Finally, a message file is created and the daily sea-ice file written out and all the ancillary files are closed. The age check is also performed if an error has occured in ICE_CONV, errors in ICE_CONV are not normally fatal and are described below.

There is a check to ensure that no changes whatsoever can be made to the sea-ice field on a Friday, Saturday or Sunday, this includes any namelist overrides although this feature can be disabled using another namelist variable.

NAMELIST /INPUT/ variables (default values in brackets).

LN_CLIM Logical (F) - on to set northern hemisphere to climatology.

LS_CLIM Logical (F) - on to set southern hemsiphere to climatology.

LDATE_U Logical (T) - on to set dates in fixed length header to bulletin dates. If switched off then the JIC bulletin is not read. (Useful if the JIC bulletin has become corrupted)

AGE_FIELD_MAX Real (25) Maximum age of field until it is reset to climatology.

LDATE_O Logical (T) - on to invoke day of week check facility

LDIAGR Logical (F) - on for writes from ICEDAY and ICE_CONV.

LDIAG1 Logical (F) - on for writes from C_EDGE

LDIAG2 Logical (F) - on for writes from C_FILL

LDIAG3 Logical (F) - on for writes from ICE_QC

LDIAG4 Logical (F) - on for writes from C_MESS

LDIAGM Logical (F) - on to write out maps of the ice edge and final cover.

Several of the routines have return codes which are non-zero if an error has occurred. Normally a message is written out explaining the cause of the error. The routines capable of giving a non-zero return code and the subsequent action by ICEDAY are given in the table below.

SUBROUTINE	ACTION BY ICEDAY
READHK	ABORT program
OPEN	ABORT program
IN_FLDS	ABORT program
ICE_CONV	program continues and age of current data is checked. A message is
written out defining	what the error is.
OUT_FLDS	ABORT program

Program I/O

- Unit 10 housekeeping file (IN)
- Unit 11 current daily sea-ice dataset (IN) * (ICEINSURF)
- Unit 12 climatological sea-ice dataset (IN) * (ICECLIMSURF)
- Unit 13 sea-ice data transferred from HDS (IN)
- Unit 14 current SST analysis (IN) * (SSTINSURF)
- Unit 15 control namelist (IN)
- Unit 21 new daily sea-ice dataset (OUT) * (ICEOUTSURF)
- Unit 24 message file (IN)
- Unit 25 message file (OUT)
- Unit 30 character map of sea-ice distribution (OUT)

*These files are defined by the use of the environmetal varibles given in brackets.

Operational Changes.

V1.0 Create daily seaice and SST files from climatological fields.

V2.0 26/2/91 Remove SST from program as SST analysis introduced.

V3.0 1/10/91 Create seaice file by decoding bulletins received from JIC.

V3.1 7/1/92 Add routine ICE_QC.

V3.2 3/3/92 Add code to cope with data crossing Greenwich Meridian. Add control namelist to set data to climatology manually if desired.

V4.0 5/5/92. Change maximim age of field permitted before reverting to climatology to 25 and add it to namelist. Check ice field against SST analysis and perform check of which day of week it is to prevent changes over weekend period. Correct error in setting ice depth which meant that ice depth was only being set at polar regions (missing data everywhere else instead of 0). Add message file and further QC checks (New program library made - number 1)

V4.1 15/6/93 Correct bug in C_EDGE. (modset CJ150692 program library 2)

V4.2 23/02/93 Upgrade all UM routines to UM version 3.0. This includes using portable I/O routines and changing packing indicator. (modset CJ130393 program library 3)

V4.3 08/07/03 Correct code for Unicos 7. (modset CJ290693 program library 4)

V4.4 19/10/93. Upgrade all UM routines to UM version 3.2, especially to handle new real missing data indictaor introduced at this time. Also, bulletins that start and end at any longitude can now be handled.

(new program library made - 1)

3.2 ICEFMT

The character map created by ICEDAY is written out using a format statement of 255A1 because the CRAY cannot handle formatted files with a record length longer than 255 characters. ICEFMT is a simple program on the HDS which reads in the transferred character map as 255A1, rewinds the dataset and rewrites the character map as 288A1 so that it can be browsed more easily.

Program I/O: Unit 6 - output messages Unit 10 - character map of sea-ice distribution.

4. OPERATIONAL JOBS AND DATASETS

HDS Datasets:

SDB.ICEDATA - direct access dataset of record length 4096. The SPLICE bulletin is on record 3 and the NPLICE bulletin is on record 4. The DCB information is RECFM=F, LRECL=4096, BLKSIZE=4096.

COP.SEAICE - character map of the current sea-ice concentration field. There is a header of CHEADER, HDSRUN which is read using the format of (A27,L1) where CHEADER is a variable of CHARACTER*27 containing the validity date of the data and HDSRUN is a LOGICAL variable which is set to .TRUE. if the data needs to be reformatted on the HDS.

The remainder of the dataset is an array of 288 columns by 217 rows with the legend of 'I' = sea-ice, '*' = land point, '=open sea.

The DCB information is RECFM=FB, LRECL=288, BLKSIZE=288.

CRAY Datasets:

/u/opfc/op2/op/dataw/qwgl.hkfile - housekeeping file /u/opfc/op2/op/dataw/qwgl.daily.ice - current daily sea-ice dataset /u/opfc/op1/op/datar/qrgl.clim.ice - climatological sea-ice dataset /u/opfc/op3/op/datat/qtice.jic.data - sea-ice bulletin transferred from HDS /u/opfc/op3/op/datat/qtgl.daily.ice - new daily sea-ice dataset /u/opfc/op3/op/datat/qticemap - character map to transfer to HDS

These datasets are in the format described by Unified Model Documentation Paper No. F3.

Running of ICEDAY

Operational source: /u/opfc/op1/op/source/qcice.daily Operational executable: /u/opfc/op1/op/libs/qxice.daily

The executable forms part of script SURF which is run in the QG06 run of the model only. The dataset SDB.ICEDATA is copied across to £DATAT/qtice.jic.data and in doing so becomes a sequential dataset, each line being 40 characters long. The program is executed and if the run is successful the new daily sea-ice and message files are copied to the permanent CRAY directories. Finally, the character map is copied to the HDS dataset COP.SEAICE.

If qxice.daily fails within the operational run then SURF can be rerun and qxice.daily skipped if ice=false is set in COP.CRAY.SFSELECT.

Location of non-operational jobs etc:

Source library (HDS): MS12.CJSSTLIB.SEAICE Program Library (CRAY): /u/m11/user1/t11cj/sst_pl_v32/ice.daily1 The following jobs are also MS12.CJSSTLIB.SSTCNTL ICCRPL - to make initial program library ICCRMD - to create a modeck for a program library ICCREX - to create an executable ICCRGO - to run executable ICCREXP - to run executable with a modeck to a program library ICCRPLU - to create a new program library using a modeck

To make a change to the program, first create a MODSET, create a new program library and from the program library create an executable.

Running of ICEFMT ICEFMT is run by job QG06AADS Load module: COP.CORE.LOADLIB(ICEFMT) Source code: COP.CORE.SOURCE(ICEFMT) Job to make load module: COP.CORE.BUILD(ICEFMT)

There is also an archive of all JIC bulletins that have been received since the scheme ws implemented operationally. This archive is on MS12.CJICE.BULLETIN and is updated after a new bulletin has been read in by running job MS12.CJSSTLIB.SEAICE(@CNTLICE).

Reference

Kniskern,F.E. (1991). 'The Navy/NOAA Joint Ice Center's role in climate and global change program'. Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section) 90 pp207-213.

Appendix 1

Example of the bulletins NPLICE and SPLICE. There is a header which contains the validity date followed by the data.

086

000			
STAA01 KWE	3C 131240		
SPLICEC293	30708162000	WASHINGTON	100
586S0000W	587S0018W	580S0030W	576S0044W
570S0054W	572S0070W	570S0103W	572S0110W
568S0125W	573S0134W	573S0160W	573S0180W
574S0194W	580S0202W	580S0211W	582S0217W
587S0220W	591S0238W	577S0243W	570S0237W
564S0252W	560S0252W	555S0264W	560S0275W
566S0288W	573S0305W	580S0328W	575S0342W
588S0364W	592S0363W	590S0382W	585S0396W
588S0403W	591S0423W	592S0435W	593S0451W
590S0481W	597S0486W	600S0498W	600S0506W
606S0525W	610S0542W	613S0561W	620S0583W
625S0600W	630S0607W	636S0613W	640S0635W
634S0650W	625S0660W	626S0673W	632S0692W
640S0684W	643S0706W	640S0716W	642S0730W
644S0753W	646S0760W	647S0770W	644S0775W
651S0810W	660S0823W	670S0830W	676S0833W
674S0855W	673S0886W	680S0900W	680S0930W
674S0947W	675S0994W	684S1026W	680S1044W
686S1062W	684S1084W	687S1114W	683S1127W
680S1136W	686S1145W	683S1170W	680S1206W
685S1225W	680S1257W	678S1295W	675S1312W
676S1334W	677S1352W	670S1366W	664S1386W
666S1420W	658S1440W	650S1460W	644S1460W
643S1482W	642S1503W	641S1523W	636S1552W
633S1567W	630S1572W	625S1587W	625S1601W
630S1623W	633S1648W	640S1670W	644S1680W
650S1715W	647S1740W	655S1756W	650S1766W
654S1790W	646S1797E	640S1776E	634S1760E
627S1730E	630S1704E	626S1687E	620S1658E
620S1640E	625S1640E	626S1630E	621S1618E
620S1605E	623S1590E	620S1567E	620S1550E
621S1537E	614S1530E	615S1520E	622S1496E
627S1492E	626S1474E	632S1456E	630S1435E
630S1413E	630S1400E	635S1390E	634S1381E
637S1367E	634S1343E	635S1323E	640S1293E
640S1273E	640S1254E	642S1230E	633S1214E
635S1200E	635S1174E	634S1150E	630S1143E
632S1115E	626S1100E	623S1080E	622S1065E
620S1055E	620S1037E	613S1015E	610S0997E
610S0986E	615S0980E	613S0950E	613S0931E
618S0917E	614S0903E	617S0890E	610S0873E
610S0865E	612S0850E	612S0830E	604S0811E

605S0795E	605S0776E	605S0748E	613S0732E
620S0708E	615S0680E	620S0660E	615S0637E
613S0630E	616S0610E	613S0593E	610S0573E
611S0550E	610S0530E	608S0508E	612S0492E
610S0471E	610S0450E	613S0433E	610S0413E
607S0403E	610S0391E	620S0376E	612S0362E
602S0344E	604S0333E	603S0325E	614S0313E
612S0293E	604S0280E	608S0270E	610S0242E
617S0210E	615S0198E	610S0187E	606S0178E
604S0166E	616S0160E	620S0140E	622S0114E
620S0103E	610S0091E	604S0080E	603S0066E
605S0055E	603S0040E	603S0040E	597S0030E
590S0026E	591S0017E	597S0012E	594S0005E
586S0000W	9999		
NNNN			

007			
STAC01 KW	BC 131240		
NPLICEC293	30708162000	WASHINGTON	100
782N0000E	784N0007E	785N0013E	790N0020E
788N0028E	790N0044E	790N0057E	793N0067E
796N0055E	800N0063E	801N0052E	802N0058E
800N0066E	800N0077E	803N0085E	807N0100E
803N0107E	798N0132E	798N0130E	798N0130E
780N0132E	777N0110E	785N0096E	781N0095E
774N0094E	768N0110E	764N0140E	760N0144E
757N0161E	754N0163E	752N0175E	750N0187E
748N0195E	750N0207E	752N0220E	753N0227E
755N0232E	755N0242E	760N0248E	764N0252E
764N0270E	765N0287E	767N0306E	770N0308E
772N0294E	774N0293E	780N0307E	783N0317E
784N0326E	786N0340E	790N0352E	792N0366E
797N0383E	795N0400E	793N0390E	790N0390E
785N0365E	783N0370E	780N0370E	778N0372E
775N0361E	765N0364E	768N0380E	771N0403E
772N0415E	770N0432E	771N0460E	770N0467E
773N0474E	773N0493E	772N0500E	775N0517E
774N0527E	771N0533E	770N0556E	770N0567E
772N0594E	774N0615E	775N0637E	772N0656E
771N0665E	770N0676E	770N0676E	706N0550E
704N0550E	703N0554E	703N0561E	702N0570E
703N0575E	702N0585E	702N0586E	702N0586E
550N1360E	550N1363E	548N1366E	550N1370E
552N1367E	553N1365E	553N1365E	542N1380E
543N1383E	544N1384E	545N1382E	546N1382E
546N1382E	670N1720W	670N1726W	672N1727W
674N1733W	677N1740W	680N1744W	682N1750W
682N1750W	694N1750W	700N1746W	705N1744W
708N1740W	712N1740W	718N1740W	716N1732W
712N1724W	708N1725W	703N1725W	702N1714W
701N1710W	700N1708W	700N1702W	700N1690W
700N1682W	700N1670W	700N1666W	707N1664W
710N1668W	713N1662W	712N1654W	710N1646W

710N1636W	706N1623W	704N1628W	701N1627W
700N1630W	696N1632W	692N1635W	690N1643W
690N1651W	690N1658W	690N1658W	545N0573W
550N0572W	553N0560W	555N0570W	555N0572W
555N0577W	557N0580W	560N0580W	562N0582W
560N0584W	560N0583W	558N0584W	557N0586W
558N0590W	561N0590W	562N0592W	566N0594W
564N0597W	564N0600W	567N0603W	570N0607W
571N0610W	570N0612W	570N0612W	580N0623W
580N0615W	576N0610W	574N0605W	575N0602W
577N0603W	577N0607W	580N0610W	584N0612W
585N0610W	587N0613W	590N0611W	590N0614W
595N0616W	597N0610W	598N0611W	597N0615W
598N0620W	600N0616W	604N0620W	603N0624W
605N0628W	607N0626W	610N0630W	610N0635W
610N0642W	610N0647W	610N0650W	614N0647W
617N0647W	622N0646W	625N0638W	622N0631W
626N0624W	624N0624W	622N0615W	630N0608W
633N0605W	635N0608W	640N0600W	641N0593W
646N0587W	667N0564W	673N0566W	677N0580W
683N0580W	688N0587W	695N0582W	702N0587W
713N0588W	723N0590W	730N0583W	735N0570W
736N0561W	736N0560W	736N0560W	611N0484W
610N0486W	615N0496W	620N0503W	625N0513W
630N0515W	634N0521W	632N0530W	630N0528W
630N0522W	624N052IW	624N0540W	620N0527W
614N0527W	614N0521W	610N0512W	612N0510W
610N0510W	610N0504W	605N0495W	601N0500W
600N0493W	602N0485W	597N0470W	594N0460W
596N0454W	593N0453W	592N0440W	594N0440W
58/NU433W	586NU424W	590N0428W	591N0427W
593N0424W	600N0412W	605N0420W	613N0416W
620N0406W	626N0400W	631N0403W	635N0395W
640N0393W	642N0380W	644NU37ZW	650N0370W
652NU373W	655N0370W	654NU363W	656NU344W
660IN0332W	662N0314W	667NU310W	6/3N0300W
6/5NU2//W	677NU26UW	680N0241W	682N0230W
686NUZI3W	690N0207W	695N0204W	700N0198W
	756N0094W		
	770N0040W	769N0000W	775N0016W
776N0027W	772N10040W	772N10022W	775N0010W
	782N0004W	77210041W	//JN0041W
NNNN	/0210000E		
TATATATA			