
University of Leeds, 7-9 February 2023

NCAS
Unified Model Introduction

Part 1: Overview of the UM system

The Unified Model

• The UM is a numerical modelling system, developed by
the UK Met Office, and used for operational weather
forecasting and climate prediction.

• It is used by the UK academic community for research.
There are collaborations between the Met Office and
the academic community for research and development
(JWCRP and MOAP).

2

• It is used by forecast centres
and climate agencies around
the world.

© Crown copyright Met Office

Seamless modelling

• The same core model is used across spatial and temporal scales:
– Weather to climate timescales
– Global and regional models
– High to low resolution (horizontal and vertical)
– Various model heights

• It can be used in atmosphere only mode, or coupled to:
– NEMO ocean and CICE sea-ice via OASIS coupler
– UM ocean for vn6.6.3 or earlier (e.g. HadCM3, HadGEM2)
– UKCA chemistry and aerosols
– JULES land-surface

• It can also be used in other modes, including:
– Single Column Model (SCM)
– Aquaplanet
– Exoplanet

3

Unified Model family

4© Crown copyright Met Office

Global & regional NWP system

Global
● Deterministic: (10 km L70)
● Ensemble: (20 km L70)
● Data assimilation

Euro4
● 4 km 70 levels
● No data assimilation

UKV
● Deterministic (1.5 km L70)
● Ensemble (2.2 km L70)
● Data assimilation

5
© Crown copyright Met Office

Parallel suite 41

Air quality (AQUM)
● UK + NW Europe

NWP at the Met Office

6
© Crown copyright Met Office

The UM is just one part of a larger forecast system, e.g.

Archive and obs data,
plus the OPS, VER and
VAR code are available
to the UM community

Nesting suite

7
© Crown copyright Met Office

Example:
Newton funded
Malaysia project.

Global resolutions

8

Standard fixed resolutions:

Resolution Grid points Grid cell size
Spacing at

mid-latitudes

N48 96 x 73 3.75° x 2.50° ~270 km

N96 192 x 145 1.88° x 1.25° ~135 km

N144 288 x 217 1.25° x 0.83° ~90 km

N216 432 x 325 0.83° x 0.56° ~60 km

N320 640 x 481 0.56° x 0.38° ~40 km

N512 1024 x 769 0.35° x 0.23° ~25 km

N768 1536 x 1152 0.23° x 0.16° ~17 km

N1280 2560 x 1920 0.14° x 0.09° ~10 km

Vertical resolutions

9© Crown copyright Met Office

Standard resolutions, defined by model levels and height.
Example: L70 with top at 80 km

Global science configurations

• Common scientific configurations used across scales

(weather, seasonal and climate):

o GA = Global Atmosphere (UM)

o GO = Global Ocean (NEMO)

o GSI = Global Sea Ice (CICE)

o GL = Global Land (JULES)

o GC = Global Coupled (all of the above coupled

together)

• These are ongoing developments with fixed releases.

• Documented on the Global Model Evaluation and

Development (GMED) pages:

https://code.metoffice.gov.uk/trac/gmed/wiki

10

HadGEM3(-AO)

(Modified from a Met Office diagram.) 11

Under continuous development.
There are versions with:

• different code releases
• different scientific

configurations (latest
GC5)

Multiple resolutions:
• N96-ORCA1/ORCA0.25
• N216-ORCA0.25
• N512-ORCA0.25/ORCA12

Can run atmosphere-only

UM atmosphere (GA)

CICE sea ice (GSI)NEMO ocean model (GO)

OASIS3-MCT coupler

JULES land surface (GL)

● Earth system model based on HadGEM3 but with additional components &

couplings.

● Joint Met Office and NERC development & will contribute to CMIP7.

UKESM

12

Resolutions:

● Low: N96-ORCA1

● High: N216-ORCA025

● Hybrid: N216-ORCA025

with reduced res for

UKCA & MEDUSA

Other modelling systems

• MOGREPS: ensemble forecast
– Based on Parallel Suites

• GloSea: seasonal prediction
– Based on HadGEM3

• DePreSys: decadal prediction
– Based on HadGEM3

• HadGEM2:
– Previous Earth System Model

• HadCM3:
– Previous climate model

13

© Crown copyright Met Office

NWP v Climate models

NWP Climate

Run length 5 day operational forecast,
15 day ensemble forecast

Months (seasonal)
Years, decades, centuries +

Global resolution Global model:
N1280L70 with 4 min ts

Ensemble:
N640L70 with 7.5 min ts

Low resolution:
N96L85 with 20 min ts

High resolution:
N512L85 with 15 min ts

Calendar Gregorian Seasonal: Gregorian
Other: 360 day

Dynamics Non-bit reproducible Bit-reproducible

Aerosols Climatological concentrations
specified.

Interactive schemes with
emissions specified
(not seasonal).

14

Major UM developments

15

Old
dynamics

New
dynamics

FCM NEMO &
CICE

ENDGame Rose
Cylc

MOSRS

UM 4.5 UM 5.2 UM 6.1 UM 6.6 UM 7.1 UM 8.5 UM 9.0 UM 10.0

1998 2001 2005 2007 2008 2013 2014 2015

Climate models

 HadCM3 HadGEM1 HadGEM2 HadGEM3

NWP models

PS12 PS19 PS20 PS34 PS35 PS36

Dynamical core Infrastructure Ocean model

…

MOSRS

• Met Office Science Repository Service

https://code.metoffice.gov.uk

• Hosts the UM code (from version 10.x)

• Plus other Met Office scientific software (e.g. JULES, SURF)

and model developments (e.g. GMED, UKESM)

• One single repository for all UM users around the world:

– Immediate releases

– Shared code developments & documentation

– Shared suite repository

16

https://code.metoffice.gov.uk

Old UM software (pre vn9.0)

17

UMUI
Database of user jobs
Graphical job editor

Reconfiguration
Prepares initial
model state

Output file tools
Data processing
Analysis and visualisation

PUMA

HPC

Data analysis platform

Input file tools
Prepare ancillary data

FCM
Code manager

Compilation and build

Archiving
Moves data

OASIS
Coupler

NEMO/CICE
Ocean & sea-ice

Atmosphere model
Dynamical core
Physics
Diagnostics (STASH)

JULES, SOCRATES, UKCA

IO server

UM software (from vn10.0)

18

UMUI Rose
Experiment database
Configuration editor

Reconfiguration
Prepares initial
model state

Output file tools
Data processing
Analysis / visualisation

PUMA

HPC

Data analysis
platform

Input file tools
Prepare ancillary
data

MOSRS

FCM
Code version control

Compilation and build

Cylc (& Rose)
Workflow manager &
job submission

OASIS
Coupler

NEMO/CICE
Ocean & sea-ice

Atmosphere model
Dynamical core
Physics
Diagnostics (STASH)

JULES, SOCRATES, UKCA

IO server
XIOS
IO server

Postproc /
transfer
Data processing &
archiving

File systems:

/home and

/projects

UM submission workflow

19

UM submission

File systems:

/home and
/work

MASS

Monsoon2Lander

Code repositories
MOSRS mirrors
Web server (Trac)
User /home space
UMUI, Rose/Cylc and FCM

PUMA

Jasmin

NOC

MOSRS

Repositories:
• Code (UM 10.x)
• Rose suites

ARC3

CEMAC
Centre of Excellence for
Modelling the Atmosphere
and Climate

University of Leeds, 7-9 February 2023

NCAS
Unified Model Introduction

Part 2: Running the UM

Rose, cylc & FCM

• Rose is a set of tools for running and managing scientific

applications.

• Developed by the Met Office but not UM-specific (can

be used for other codes, e.g. NEMO).

Rose is tightly integrated with:

• cylc: Workflow management & scheduling system

• FCM: Code management tool built around Subversion

and a Make-like build system.

21

The UM is configured and controlled through

Rose:

Creating a UM suite

• A Rose suite defines an experiment set up (e.g. UM run plus

pre- and post-processing).

• To get started, copy an existing UM suite from UKMO, NCAS or

a colleague that is close to what you wish to run.

– Check that it runs before making changes.

• Contact CMS for:

– Standard suites for ARCHER2 or Monsoon2.

– Advice on porting suites to different platforms (as this may

not be straightforward).

22

UM application settings

A UM suite is defined by:
• UM code version (e.g. vn13.0) plus changes to the main code

base in the form of FCM branches
• Horizontal and vertical resolution and domain
• Scientific schemes and parameterizations
• Input files: start files, ancillary files and lateral boundary

conditions
• STASH requests specifying the diagnostic fields to be output
• Control settings such as run length and cycling (resubmission)

frequency.

23

Suite repository

Rose suites are held in a repository on MOSRS:

• Suites are under version control.

• Suites have a unique id, e.g:

u-aa774

To launch the graphical suite repository viewer:

rosie go &

You can copy suites via the GUI or command-line tools:

rosie copy <suite-id>

24

Rosie go

25

Double-click to check-out and edit or run a suite

Click to copy a suite

Add search terms

Editing suites

To launch the Rose suite editor GUI, double-click a suite in the
Rosie GUI.

Suites consist of a set of text files, which can be edited directly

• Checked-out suites live in a directory:
$HOME/roses/<suite-id>/

To launch the Rose editor GUI from the command-line:
• cd to the suite file directory

• Run: rose edit &

26

Rose edit

27

Top-level
suite settings

UM model
settings

Code & build
settings

Using the GUI

Features:

• Search facility (or can grep suite files).

• Undo/redo button.

• Highlighting of unsaved changes.

• Basic description of each field plus additional information

(only as useful as metadata provided!)

• Immediate type checking (where specified in metadata).

• Further checking with “Check fail-if/warn-if” macro.

28

Editing a UM suite

29

Undo / redo

Search

Error details

Total errors

Running suites

• ARCHER2 suites are submitted from PUMA.

• Monsoon suites are submitted from the Monsoon login nodes.

• Run from editor GUI or command line:
rose suite-run

• Launches a GUI which displays progress of suite.

• Running suite is controlled through a daemon running on
PUMA (or equivalent).

• Users can:
– stop, pause, and restart suites
– edit running suites
– re-run parts that have failed.

30

A basic UM suite

A basic UM suite consists of the following tasks:

• Tasks may have different names in different suites.
• More complex suites may have additional tasks, for e.g.

post-processing, archiving logs, testing etc.

31

fcm_make Code extract and mirror

fcm_make2 Code pre-processing and build

recon Reconfiguration: preparation of
start data.

atmos Model run

Single step on
Monsoon2

32

Rose suite-run

Viewing log files

Rose bush is a system for browsing suite log files:

PUMA: Currently not available

Monsoon: From xcslc0/xcslc1 launch browser by running:

firefox http://localhost/rose-bush/

Note: Rose bush only shows files from last run.

Can view log files directly in:

~/cylc-run/<suite-id>/log
• Logs from older runs will be tarred up (unless deleted with

housekeeping or --new run).
• Cylc-run directory can become large very quickly, so regularly

delete.

33

http://localhost/rose-bush/

34

Rose bush

Interpreting UM log files

Log messages from the model are sent to job.out and job.err.

• The output listing can be quite large and confusing.

• Check for keywords like ERROR, ABORT, "file not found"

• Timings are reported at the end of the listing file.

• You can control the volume of log messages by setting

PRINT_STATUS.

Submission failures and suite timeout messages are reported in:
job-activity.log, suite/out, suite/err

If you are making model changes, always check things look OK before

proceeding, i.e. executable exists, start file exists, output data looks

sensible.

35

Output data

All Rose/cylc suite files are held in the directory:

~/cylc-run/<suite-id>/

UM output such as restart and diagnostic files usually goes to:

share/data/History_Data/

Or it may be written to the task directory for that cycle, e.g.:

work/

19810901T0000Z/atmos/

19811001T0000Z/atmos/

Build files go to:

share/fcm_make/
36

Terminology recap

37

Suite: Experimental set up

Rose: Application management system

Rosie: Suite repository manager

Rose edit: Application editor

Rose bush: Output log viewer

Cylc: Scheduling & workflow system

FCM: Code management & build system

University of Leeds, 7-9 February 2023

NCAS
Unified Model Introduction

Part 3: FCM and the UM

What is FCM?

• Flexible Configuration Management system
– Written by the Met Office.

– A set of tools for managing and building source code.

– Uses subversion for code management

• Defines a common process and naming convention

• Adds a layer on top of subversion

39

Overview of FCM

• FCM system consists of 3 components:

– Integrated Configuration Management, wiki and issue
tracking system

– Extract system

– Build system

40

Trac

• Integrated wiki and issue tracker

– can be used for project documentation

– keep track of bugs, development, etc

• Browser for subversion repository

• Timeline view of issues, wiki pages and subversion
repository

https://code.metoffice.gov.uk

41

https://code.metoffice.gov.uk/trac/um

Extract System

Purpose:

– Extracts source code from the repository ready for the
build system

Features:

– Combines code from a number of branches

• Only if the modified files do not overlap

– Mirrors code to a remote system (e.g. ARCHER2)

– Generates a configuration file for the build system

42

Build System

Purpose:

– Builds the code assembled by the extract system and
creates the model executable.

Features:

– Parallel build

– Incremental build

– Build dependency analysis

43

Build

ARCHER2
PUMA

MOSRS

Extract

44

FCM System Components

Subversion
Repository

Trac

Local
Working

Copy

Pre-Extracted
Code

Mirrored
Code

Pre-Built
Code

Code
Management
Commands

Features (1)

• Full history of source file

– Accessible on the web via Trac

• Edit source code directly on PUMA

• Version control of directory tree

– Copy, rename, add, delete files and directories

• Atomic commits

– All or nothing is committed to the repository

45

Features (2)

• Access to all functions is via the fcm command
– FCM command syntax is simple and easy to use
– Simple GUI wrapper to the subversion commands
– Commands used only on PUMA
– Build system is installed on ARCHER2, Monsoon2, etc

• Comprehensive User Guide
http://metomi.github.io/fcm/doc/user_guide/

46

http://metomi.github.io/fcm/doc/user_guide/

Subversion – some terminology

• The UM code is held in a subversion repository

• The trunk is the consolidated master version of the code

• A release is a specified revision of the trunk (identified by a

revision keyword)

• Branches are the method of making and tracking changes –

held in the repository

• A working copy is a local copy of a branch (possibly with

changes to it)

47

Typical Workflow

48

Repository
(MOSRS)

Working Copy
(PUMA, Monsoon2)

HPC
(ARCHER2, Monsoon2, …)

Create
Branch

Commit to
Branch

Checkout Modify Code

Build Model

MOSRS

Met Office Science Repository Service

• Common subversion code repositories for all users:

– Hosts UM code from vn10.0

– Other model codes; JULES, MONC, etc

• Document collaborative projects (e.g. UKESM, GMED):

https://code.metoffice.gov.uk/trac/home/wiki/ProjectList

Working with MOSRS:

• Users access Trac system (wiki and tickets) via web.

• Code changes are made by remotely checking out and committing

to MOSRS.

• Sites have local read-only mirrors, used by suites when extracting

code (faster than accessing MOSRS).
49

https://code.metoffice.gov.uk/trac/home/wiki/ProjectList

MOSRS

50

Met Office Shared
Repositories

(UM, JULES, etc)

PUMA

Local Mirror
of Shared

Repositories

Make
code changes

Extract code into
Rose suite

Updated every 5 mins

Make
code changes

Extract code into
Rose suite

Met Office

Local Mirror
of Shared

Repositories

UM Trunk Developments

Specific procedure for submitting code changes to the UM trunk,
which includes:

• Liaising with code owner
• Documenting changes & testing in a code ticket on MOSRS
• Running rose-stem developer tests (on Monsoon or

colleague may run inside Met Office).

Further details:

https://code.metoffice.gov.uk/trac/um/wiki/working_practices

Submission schedule and release deadlines:

https://code.metoffice.gov.uk/trac/um#ReleaseSchedule

51

https://code.metoffice.gov.uk/trac/um/wiki/working_practices
https://code.metoffice.gov.uk/trac/um#ReleaseSchedule

FCM and Revision Keywords

• FCM URLs are cumbersome - keywords provide a shortcut
• Specified with the fcm: prefix
• Run fcm kp for a full list

52

In a similar way revision keywords are used, so that you don’t have to remember
the specific revision number that relates to a UM version. E.g. The revision
keyword vn10.4 denotes the revision of the repository that is UM version 10.4, in
this instance r18260.

Keyword Value

um.x https://code.metoffice.gov.uk/svn/um/main

um.x_tr (or um.x-tr) https://code.metoffice.gov.uk/svn/um/main/trunk

um.x_br (or um.x-br) https://code.metoffice.gov.uk/svn/um/main/branches

um.xm (local mirror) svn://puma/um.xm_svn/main

dev/user: vn10.2_user_branch_Y

UM Repository Diagram

MOSRS
UM trunk

dev/user: vn10.3_user_branch_A

vn10.2

Key:-
P/S – shared package branch
P/C – configuration branch
dev/user – user development branch

- changeset

- stable release

53

vn10.3

dev/user: vn10.3_user_branch_B

dev/user: vn10.2_user_branch_X

Stable release

P/S: vn10.2_hadgem3_package_branch

Create
branches from
code releases

Specifying Branches in a Suite

54

FCM Dos and Don’ts

DO:
• Regularly commit your working copy changes to your branch

at appropriate intervals. This means you can recover to a
previous state easily.

DON’T:
• Copy another user’s working copy, either in whole or part. A

working copy contains hidden subversion files which, if edited
or moved, will cause problems.

• Copy sub-directories around within working copies, this can
also lead to problems, for the same reason as above.

55

Basic CM Sub-Commands

• The essential sub-commands are:

– checkout

– commit

– diff

– status

– branch

– merge

• Help is available for all sub-commands:

fcm help <sub-command>

56

Further Information

• FCM User Guide
http://metomi.github.io/fcm/doc/user_guide/

• Command-line help:
fcm help <subcommand>

• Hands-on FCM Tutorial in exercises.

57

http://metomi.github.io/fcm/doc/user_guide/

University of Leeds, 7-9 February 2023

NCAS
Unified Model Introduction

Part 4: Managing suites

Contents

• Suites and version control

• Running and controlling suites

59

Suites and version control

• Suites are held in an FCM (Subversion) repository on MOSRS.

• This is the `roses-u` repository:

– https://code.metoffice.gov.uk/trac/roses-u

• There is also a web interface for browsing suites:

– https://code.metoffice.gov.uk/rosie/u

• You can use the same FCM commands as for managing code,
plus some extra rosie commands.

60

https://code.metoffice.gov.uk/trac/roses-u
https://code.metoffice.gov.uk/rosie/u

Rosie checkout & copy

• You need to check out a suite to edit and/or run it.

– Double-click on the suite in rosie go

– On the command line: rosie checkout <suite-id>

• All checked out suites go to your ~/roses directory on PUMA.

• You can check out and run another user’s suite but you won’t
normally be able to save any changes you make.

• To copy into your own suite (& check out):

– rosie copy <suite-id>

61

Suite repository PUMA directory

u-ab123
~/roses/

 u-ab123/

rosie copy
● Creates a new

identical item in
the repository.

● And pulls files
to local
directory.

u-ab123
~/roses/

 u-ab456/u-ab456

rosie checkout

● Pulls files into
local directory.

● Does not alter
repository

FCM commits

• Any changes you make in the Rose editor are saved in your
checked out working copy only.

• To save changes to the repository:

– cd ~/roses/suite-id

– fcm commit

• Useful commands:

– fcm status

– fcm diff

• There is a Trac system (with wiki & ticket system) for the suite
repository so you can document changes.

63

Rosie suite browser

rosie go: Graphical suite browser

• By default lists your checked out suites only.

• Provides suite status information such as repository
modifications, local changes etc.

• Search facility to browse all suites in the repository.

• Can copy, checkout, edit and run suites from here.

rosie ls : Lists checked out suites on command-line

64

= u-aa774/trunk@70604 annetteosprey um Simple N48 Endgame GA6 Standa
= u-ao685/trunk@57651 annetteosprey HighResMIP GC3.1 N512 ORCA025 UM10.6 his

65

Sorted by
owner

Suites can have
branches

Status of
checked out
suites

Running suites

To run a suite:

• Click the play button from the rosie or rose edit GUIs.
• From the command-line:

– Navigate to the suite directory, e.g: cd ~/roses/u-aa774
– Then: rose suite-run

There are many options to this command - some useful ones are
listed in the following slides.

Rose/cylc provide powerful options for pausing, stopping &
restarting suites.

66

Rose suite-run

Useful options to rose suite-run:

67

--new
-N

Delete any files from previous runs.

--restart Restart suite from where it stopped.

--reload Update suite definition for an already running suite

-v -v --debug Debug/get more info.

--no-gcontrol Do not launch cylc GUI (progress monitor).

--no-log-archive Don’t tar up (archive) log files from previous runs

--name=NAME
-n=NAME

Give the suite a different name to the base
directory.

Rose suite-run

Options that allow you to see what the suite does without

actually running - useful for complex suites:

68

-- --hold Hold (pause) suite on startup.

-- --mode=simulation Perform a dummy run (executes all tasks as 'sleep
10').

--install-only
-i

Construct app files & copy over to remote hosts but
don’t run

--local-install-only
-l

Construct app files but don’t copy over to remote
host.

(cylc options)

When a suite is launched

When you launch a suite:

• The run scripts and application files (e.g. namelists) are

copied to the cylc-run directories on the required machines.

• A suite manager process is launched on the suite host (PUMA

or the Monsoon login nodes).

• Cylc keeps track of the progress of running tasks.

• Cylc submits tasks according to dependencies defined in the

suite (e.g. build, then reconfiguration, then atmosphere

model).

• On PUMA cylc monitors remote (e.g. ARCHER2) tasks by

polling every 5 minutes.

69

Cylc GUI

The Cylc GUI (gcylc) is launched automatically when you submit a
suite.

• You can safely shutdown the GUI and log out of PUMA
without affecting the suite.

• To relaunch the GUI run:

rose sgc or rose suite-gcontrol

The Cylc GUI allows you to:

• View the task dependencies in your suite
• Monitor suite progress and view log files
• Kill, re-run and change the status of tasks
• Pause, release, and shutdown the suite

70

Graph view

Ungroup tasks Succeeded

Submitted (queuing)

Running

Waiting (for other
tasks to complete)

Right click on task row

Reloading a suite

• You can make changes to a suite whilst it is running by

reloading the suite definition.

rose suite-run --reload

• Warning: if you try to reload through the Cylc GUI - it will

only pick up changes to the suite.rc file & not anything else.

• You can then re-trigger failed tasks.

• Note: the reload won’t affect any tasks that have already

been submitted. You will have to kill & re-trigger to run with

the new changes.

73

Right click

Suite lifecycle

• Normally a suite will shutdown if it completes successfully.

• Usually if the suite fails, it will remain active until it times out (the

timeout period is defined in the suite.rc file).

• To see what suites you have running:

– rose suite-scan (command line listing)

– cylc gscan (graphical view)

• Whilst a suite is active you can view it through the cylc GUI:

– rose sgc

• Once it has stopped, you will have to look at rose-bush or the

cylc-run directory to see whether it succeeded.

• Stopped suites can be restarted from where they left off.

75

Restarting a suite

Restarting a suite loads the state of a previous run, and allows
you to continue on from that point, in order to:

• Fix a failed suite (without starting again from the
beginning).

• Continue the run for longer.

Warning: note the difference between:

rose suite-run --restart : re-install & restart suite

• Use to update suite with any changes e.g. run length.
• Usually what you want to do.

rose suite-restart : restart without re-installing suite

• Will not pick up any suite changes.
76

When a suite restarts

• Rose/cylc checks the task states are all correct:

– Because the suite can be shutdown or crash whilst the

tasks are still running.

• If the previous run succeeded:

– It submits from where it left off (continuing a long run).

• If the suite had failed tasks:

– It leaves it as it is, allowing you to make any necessary

fixes.

– Then manually re-trigger failed tasks and the suite will

continue on as normal.

77

Stopping a suite

To stop a running suite:

• Click the stop button in the GUI
• rose suite-shutdown or rose suite-stop

Different modes of shutdown:

From the GUI select “Control -> Stop suite” to access options.

78

(default) stop the suite after current active tasks have
finished

-- --now stop immediately, orphaning current active tasks

-- --kill stop after killing current active tasks

Further information

• For more information on the command line tools (for fcm,
rose and cylc) use the command ‘help’, e.g.:

rose help suite-run or
rose suite-run -h

• There is a lot more that can be done with cylc, e.g. setting up
complex workflows; adding new tasks at run-time; real-time
triggering; configuring how the suite is visualised etc. See the
documentation for details:

https://cylc.github.io/cylc-doc/7.8.8/html/index.html
http://metomi.github.io/rose/doc/html/index.html

• In the next presentation we go over Rose and cylc suite files.

79

https://cylc.github.io/cylc-doc/7.8.8/html/index.html
http://metomi.github.io/rose/doc/html/index.html

University of Leeds, 7-9 February 2023

NCAS
Unified Model Introduction

Part 5: Exploring suites

Understanding Rose suites

A Rose suite consists of:

• Suite definition:
– Describes tasks to be run and in what order
– Describes where and how to run tasks

• App definitions:
– Application settings such as input files, namelists etc

• Metadata:
– Defines how settings are displayed in the GUI.
– Can also provide help, logic, macros.
– The UM picks up central metadata.

81

A task can be an application (app) such as
the UM which is defined in the suite.

UM suite directory

Basic UM suite directory structure:

roses/u-cc519/

 rose-suite.conf

 rose-suite.info

 suite.rc

 app/

 fcm_make/

 rose-app.conf

 file/

 fcm-make.cfg

 um/

 rose-app.conf

 meta/

 rose-meta.conf

82

Suite metadata

UM application settings:
- namelists, environment

variables, file locations

Build settings:
- code branches,

platform configuration

Suite definition & settings

Basic UM suite

The basic UM suite consists of the following tasks:

Task settings can be found under the app headings (fcm_make
and um)

83

fcm_make Code extract and mirror
fcm_make app

fcm_make2 Code pre-processing and build

recon Reconfiguration
 um app

atmos Model run (with cycling)

Basic UM suite

84

Apps

Top-level
suite settings

UM model
settings

GA7 suite

85

More apps

More options in
top-level
control

GA7 apps

UM apps:

• install_ancil: Sets up ancillary files
• postproc: Data archiving and post-processing

Built-in Rose apps:

• housekeeping: Tidies up log files.
• rose_ana: Testing (e.g. to compare bit-reproducibility).
• rose_arch: Archiving of suite files.

86

Suite files

Top-level suite files:

Application files (under app/.../):

87

suite.rc Workflow & task definitions (cylc)

rose-suite.info Rosie suite information (Rose)

rose-suite.conf Suite settings (Rose)

meta/rose-meta.conf Suite metadata (Rose)

rose-app.conf Application settings (Rose)

file/fcm-make.cfg Build settings (FCM)

Suite level:

 Application level:

Additional suite files

88

site/<machine>.rc Machine specific settings to be
included in suite.rc file (Cylc).

opt/rose-app-<name>.conf Optional settings to be applied
to application (Rose).

meta/lib/
 etc/

Custom macros.

bin/
file/

Other (non Rose/cylc format)
files required by suite.

File formats

rose-*.conf files follow the Rose modified INI format:

• http://metomi.github.io/rose/doc/html/api/configuration/index.html

suite.rc and site include files follow the cylc extended-INI
format with jinja2 templating:
• https://cylc.github.io/cylc-doc/7.8.8/html/appendices/site-user-config-re

f.html#

If doing anything other than minor suite edits, it is worth looking
at the documentation and working through the Rose tutorials.

89

http://metomi.github.io/rose/doc/html/api/configuration/index.html
https://cylc.github.io/cylc-doc/7.8.8/html/appendices/site-user-config-ref.html#
https://cylc.github.io/cylc-doc/7.8.8/html/appendices/site-user-config-ref.html#

Editing Rose suites

• The rose suite files are plain text so can be edited directly.

• The GUI just displays settings defined in these files according

to the metadata.

– So it is usually easier to use the GUI because of the extra

information from the metadata.

• However: to edit the workflow (list of tasks & dependencies),

and some of the runtime settings (depending on the suite),

you will need to edit the suite.rc directly. The suite.rc file

cannot be edited through the GUI.

• Warning: Some settings can look different in different suites.

90

Runtime settings

Most of the UM settings i.e. namelist entries are largely the
same between suites as they use standard metadata.

However, certain runtime settings can appear in different places
depending on the suite. These include:

• Model run length, cycling, start date
• Start file
• Job time-limits and number of processors
• Machine username and project code

There is no standard format for what appears at the top-level
suite-conf in the GUI - this is suite dependent. You may need to
edit the suite.rc file directly.

91

suite.rc

Cylc suite configuration file (extended INI format), containing:

• Suite “workflow” in terms of:
– Tasks (e.g. compilation, reconfiguration, and atmosphere

run).
– Dependencies between tasks (the order in which they

should run) and cycling.
• Task definitions:

– Each task runs a command or an app.
– Need to specify where and how tasks are run (e.g.

ARCHER2/Monsoon, time limit, project code etc).

• Suites can use inheritance and templating (though Jinja) to
generate highly complex workflows.

92

Simple workflow

93

suite.rc
[scheduling]
 initial cycle point = 18010101T0000

 final cycle point = 18020101T0000

 [[dependencies]]
 [[[R1]]]

 graph = “fcm_make => \
 fcm_make2 => \
 recon => atmos”
 [[[P3M]]]
 graph = “atmos[-P3M] => atmos”

(Courtesy of Scott Wales)

Describes when tasks
are run.

Cycling for long model
runs.

Run once - start up
tasks

94

• Complex workflow from
NEMO data assimilation
suite.

• Tasks are grouped.

Exploring complex suites

For complex suites it can be difficult to work out what the suite is
going to do, because of:

• Complex dependencies and cycling.
• Task inheritance.
• Jinja code

To explore without running:

• Install files: rose suite-run -i
• View run graph: cylc graph <suite-id>

Click button in GUI to ungroup tasks.

• Go to cylc-run directory and look at suite.rc.processed file
which has evaluated jinja2 code.

95

96

Task definitions

[runtime]
...

Atmosphere Model Run
 [[atmos]]
 inherit = ARCHER2
 [[[directives]]]
 --nodes = 1
 --ntasks = 128
 --tasks-per-node = 128
 --cpus-per-task = 1
{% if HPC_QUEUE is defined %}
 --qos = {{ HPC_QUEUE }}
 {% if HPC_QUEUE == ‘short’ %}
 --reservation = shortqos
 {% endif %}
{% endif %}
 [[[environment]]]
 UM_INSTALL_DIR = /work/y07/shared/umshared
 ROSE_TASK_APP = um
 ASTART=../recon/atmos.astart
 FLUME_IOS_NPROC = 0
 OMP_NUM_THREADS = 1
 ROSE_LAUNCHER_PREOPTS="--cpu-bind=cores"

Definition for each task

Inherit settings

Jinja code

Variable set in rose-suite.conf

Slurm header

App to run

srun options

rose-suite.conf

Generally used to set top-level variables used in suite.rc file.

97

[jinja2:suite.rc]
BUILD=true
HPC_ACCOUNT='n02-cms'
HPC_HOST='login.archer2.ac.uk'
HPC_QUEUE='short'
HPC_USER='annette'
RECON=true
VN='10.5'

[[ARCHER2]]
...

 [[[directives]]]
 --account={{HPC_ACCOUNT}}
 [[[job submission]]]
 method = slurm
 [[[remote]]]
 host = {{HPC_HOST}}
{% if HPC_USER is defined %}
 owner = {{HPC_USER}}
{% endif %}

rose-suite.conf suite.rc
Apply these variables to
suite.rc file

Editing the suite.rc file

• Rose settings (variables that appear in rose-suite.conf) can

be edited in the GUI.

• Cylc task settings (e.g. number of processors, OpenMP

threads, time limit etc) may be variables or hard-wired in the

suite.rc (or site include) file.

• The suite.rc file is also the place to edit:

– Email notifications

– Suite timeout limits

• UM suite.rc files can look different.

– Settings may have different names & locations

98

Date and time format

Rose and cylc use the ISO 8601 date format to specify the start
date, run length and cycling periods (CRuns).

Format:

• Specific date & time: CCYYMMDDThhmmZ
– E.g. 20160915T1430Z

• Time period: PnYnMnDTnHnMnS
– E.g. P10Y6M, P3M, P1D, PT6H

In some suites it may not be necessary to write ISO dates directly
- they may be translated.

99

Common issues

• Be careful about editing suite files with the rose editor GUI

open:

– If you run the suite through the GUI or save the suite, any

changes made outside the rose editor will be lost.

• Be aware of optional configurations:

– You can’t make changes to these through the editor, but you

can view them by clicking the icon.

• The cylc_runs/ directory can fill up fast on PUMA:

– These can usually be deleted as the logs are also on the

HPC.

100

Optional configurations

101

Click to view optional
configuration overrides

University of Leeds, 7-9 February 2023

NCAS
Unified Model Introduction

Part 6: UM Data Files and IO

Contents

• Overview

• UM File formats

• Model I/O

– Model input

– Model output

103

Overview

• Climate and weather models are nothing without input and
output data.

• There are numerous data formats available.
• All consist of of files which contain the meteorological data

and associated metadata.
• Metadata is "data [information] that provides information

about other data".
• Data is useless without associated metadata.
• Generally the information contained in files of different

formats will be the same.
• Different UM subsystems and analysis tools require different

data formats.

104

Contents

• Overview

• UM File formats

• Model I/O

– Model input

– Model output

105

UM data formats

• This talk mainly concentrates on the UM atmospheric model.
• Historically the UM uses two propiritory data formats from

the Met Office, fieldfiles and PP.
• UM Fieldsfiles are mainly used at runtime for direct model

IO.
• PP files are derived from fieldsfiles and are used for data

analysis.
• However, NetCDF is the main global standard for weather

and climate data and its usage is increasing in the UM.
• There are numerous data format conversion tools available

for the UM.

106

UM and PP formats
The two main types of UM file formats:
UM fieldsfile format (also called UM format, dump format,
ancil format)
• Original format read and written by the model.
• Direct access files consisting of a primary header and a series

of secondary headers that point to the data.
• 64-bit big-endian.

PP format
• Produced from UM fieldsfiles for data analysis (not used by

the model).
• Files from the CEDA and UKMO archive may be in this format.
• Sequential files (header, data, header, data).
• 32-bit big-endian.

Described in UMDP F03:
https://code.metoffice.gov.uk/doc/um/latest/papers/umdp_F03.pdf

107

There can be confusion
between these file types.

https://code.metoffice.gov.uk/doc/um/latest/papers/umdp_F03.pdf

Fieldsfile and PP formats

108

Fixed length header

Lookup header 1

Lookup header 2

Lookup headers….

Data field 1

Data field 2

Data fields….

Header 1

Data field 1

Header 2

Data field 2

Header n

Data field n

UM Fieldsfile PP file

Metadata and data are
ordered differently.
Each data field is a 2D
array.

(CF-)NetCDF

Network Common Data Form:
• Portable and self-describing data format.
• Various supported and external libraries and tools.
• Widely used and a standard format for many scientific

communities.

Climate and Forecast conventions:
• Set of standards for describing data (metadata).
• Definitive explanations of data variables (standard names).
• Definitions for temporal and spatial properties of the data.
• http://cfconventions.org/

109

http://cfconventions.org/

NetCDF and the UM

• Common uses of NetCDF :

– Input data sets may be in NetCDF format (e.g. CMIP6

scenarios).

– Analysis tools/scripts may expect NetCDF.

– NEMO and CICE use NetCDF files.

– UKCA uses NetCDF for emissions and nudging.

• There are tools for converting between (CF-)NetCDF and

UM/PP formats.

• The UM can now write CF-NetCDF directly (from vn10.9)

110

Contents

• Overview

• UM File formats

• Model I/O

– Model input

– Model output

111

Files in Files out

Start files
(also called initial files, dumps or
restart files)

Lateral boundary conditions (LBCs)

Ancillary files
- initial
- forcing

Spectral files for radiation (ASCII)

UKCA files (NetCDF)

Restart files
(or dumps)

LBCs

Diagnostic files

Climate means

 UM files

● Most model files (except for spectral and UKCA) are in UM fieldsfile
format, with the header metadata distinguishing between dumps,
ancillaries, LBCs and diagnostic files.

32

UM file infrastructure

113

64-bit UM

Unified Model

Reconfiguration

64-bit UM

netCDF

xancil

32-bit PP

pptoanc

um-convpp

xconv

CF-netCDF

32-bit PP

cf-python Iris

netCDF

ff2pp

64-bit UM

UKCA files

Various
formats

CAP/ANTS

 NetCDF

ECMWF
analysis

 GRIB

Start file

64-bit UM

Ancillary
files

Initial
conditions

64-bit UM

LBC files Restart files

Contents

• Overview

• UM File formats

• Model I/O

– Model input

– Model output

114

UM start dumps
• Start dumps provide the initial state for model variables.

• For climate models restart dumps from other UM runs

normally used, which have to be processed by the

reconfiguration system (more of which later).

• Start dumps for standard resolutions are available in $UMDIR/

• For NWP experiments or case studies, data for a specific date

are available:

– UKMO archives the last ~18 months of analyses.

– For other dates, use ECMWF data and convert to a UM
dump.

– Contact the CMS helpdesk to request data and for advice
on starting from ECMWF data.

115

UM ancillary files

• Ancillary files provide additional data to the model:

– Initial data to be reconfigured into the start dump.

– Fields to be updated regularly throughout the run.

• Normally contains predefined non-prognostic data such as

land/sea mask, orography, emissions, SSTs and sea ice in

atmosphere only models, land surface type...

• A number of tools are available to create ancillary files,

detailed in another talk.

• Standard ancillary files can be found under
$UMDIR/ancil/atmos/

116

The Reconfiguration
• A compatible start dump may not be available for a particular

model configuration.

• The reconfiguration is a standalone program within a suite

which modifies (“reconfigures”) a UM start file.

• It ensures the start file has the correct prognostic fields (ie

those variables which describe the model’s current state)

required for the model to run.

• It can be used to:

• Initialise fields with data from ancillary files

• Initialise fields to zero, constants, missing data

• Add new fields which may be absent in the initial dump.

• Interpolate data to a new resolution or subdomain.

117

The Reconfiguration and ancillaries
• The reconfiguration is nearly always run at the start of any

UM suite as part of the normal workflow process.

• Time invariant ancillaries are inserted into the initial dump

file.

• Time varying ancillaries are updated while the model runs,

and any pre-existing fields in the dump are ignored.

• It is good practice to initialise time-varying ancillaries to

“missing data” in the reconfiguration section of the GUI, so

that any inconsistencies will cause the model to fail.

118

Contents

• Overview

• UM File formats

• Model I/O

– Model input

– Model output

119

• Restart dump files contain model prognostic variables, and
are written at regular intervals.
– To restart the model for when things go wrong so that

the run can be continued rather than starting again.
– To continue long runs.
– Provide standard initial conditions for other

experiments.
– Enable re-running of the model at later dates.

• Be aware that changing the dump frequency changes the
results, so keep this fixed if reproducibility is important.

• The user can choose the dump archiving frequency.

120

UM restart dumps

Diagnostics and STASH

The UM has its own inbuilt diagnostic system, STASH:

Spatial and Temporal Averaging and Storage Handling

• All of the available runtime diagnostics has an unique identifier, a

“STASH code”.

• STASH codes made up for 5 digits, the first two are the section

number, the final three the item number.

• The section is a submodel or functional part of the model, such as

LW radiation (02) or convection (05).

• STASH codes which start “00” are model prognostics.

• Examples:

– 00024 Surface temperature

– 05216 Total precip rate

121

STASH specification

For each output diagnostic, three profiles are used to specify how it is
written, which roughly correspond to when, what and where to:

• Time profile:
– When diagnostic is to be output: start & end time; frequency.
– Time processing required: instantaneous; accumulation; mean

(with sampling period); time series .
• Domain profile:

– Vertical level type: model levels; interpolated pressure levels;
soil levels...

– Horizontal domain: limited area; land points; sea points...
– Spacial meaning: [zonal, vertical, meridional, horizontal] with

weights.
• Usage profile:

– Output unit (file)

122

STASH requests table

123

Exploring STASH

• STASH can look daunting:
– Each STASH request & profile is listed by a hash-index

(because of the way Rose processes namelists).
– Select the top-level menu item (e.g. “STASH Requests” or

“Domain Profiles”) for a summary table.

• Groups of STASH items may be grouped into packages, to be
easily switched on and off.

• You can copy the diagnostics settings from one UM job to
another using the stash_copy macros:
– stash_copy.STASHExport.transform
– stash_copy.STASHImport.transform

124

Adding STASH

To add a new STASH request:

• Select “New” from the summary page, then edit entry in table.
• Just because a diagnostic is available doesn’t mean it works.

To add a new profile:

• Copy (“Clone”) an existing profile, give it a new name, and make at
least one change to it.

Important:

• Run the STASH macro (TidyStashTransfrom) to generate indices for
any new requests or profiles.

• Run the checker (Validate) macros to verify STASH items are
available and are set up correctly.

125

Output streams

• Diagnostics set up via STASH are sent to an output stream that
corresponds to a post-processing file
– This may be a single file throughout the run or
– The file may be “reinitialised” periodically.

• Maximum number of “reserved headers” is set for each file.
This can be changed in ROSE. It corresponds to number of 2D
fields.
– Set limit appropriately.
– Reinitialise files to stop the limit being exceeded.

• Files may be “packed” to save space - different packing
profiles available.

126

Climate meaning

• System for generating long term means in a manageable way.

• Meaning periods are related to the dump frequency.

– Typically, 10 day dumps and meaning periods of 3, 3, 4 and 10
→ monthly, seasonal, annual and decadal means for 360 day
models. 1 day dumps and real months, etc for Gregorian.

• To send diagnostics to climate mean system, tag with appropriate
usage profile (conventionally called UPMEAN).

• Output files:

– Usually of the form $RUNIDa.mm…, $RUNIDa.ms…
– Temporary partial sum files written to preserve precision across

restarts (of the form $RUNIDa_s2[ab]).

• Can be inefficient due increased IO required, especially for larger
models, and is gradually being replaced by a CYLC controlled
post-processing system.

127

Ocean and sea-ice

NEMO files:
• All in NetCDF.

• Diagnostic files can be written by IO server XIOS.

• May produce global output files or multiple files each covering a
subdomain.

• Construct global file after run using rebuild_nemo, e.g.:

rebuild_nemo xdodto_CU150_19780901_19780930_grid_T 16

128

CICE files:
• Restart files may be in binary or NetCDF format

– There are tools to edit the start date and convert
to NetCDF (contact NCAS-CMS for guidance)

• All other inputs and outputs in NetCDF (global files)

Appendix

Useful information for advanced users.

129

STASH macros

130

stash_testmask.STASHTstmskValidate Check STASH output is valid given science
configurations

stash_indices.TidyStashValidate Checks if STASH and item namelists have the
correct index.

stash_indices.TidyStashTransform Correct any namelist indexes. Run this when
adding new STASH requests or profiles.

stash_indices.TidyStashTransform
PruneDuplicated

As above, plus removes duplicate entries.

stash_requests.StashProfilesValidate Checks for problems with referencing between
stash requests and profiles.

stash_requests.StashProfilesRemove
Unused

Removes any profile namelists which aren't
being referenced by any stash requests.

STASHmaster file

The STASHmaster file describes the characteristics of all of the model
prognostic and diagnostic fields including its grid, when the field is
available etc.

• Full details in UMDP C4:
https://code.metoffice.gov.uk/doc/um/latest/umdp.html#C04

The STASHmaster file lives in the UM code trunk. The file needs to be

updated whenever a new ancillary, prognostic or diagnostic is added

via new code in the UM.

• Either edit in a branch or set your suite to use a local STASHmaster

file.

• See the UM Rose training on MOSRS for instructions:

https://code.metoffice.gov.uk/doc/um/latest/um-training/stashmaster.html

131

https://code.metoffice.gov.uk/doc/um/latest/umdp.html#C04
https://code.metoffice.gov.uk/doc/um/latest/um-training/stashmaster.html

University of Leeds, 7-9 February 2023

NCAS
Unified Model Introduction

Part 7: UM tools and utilities

UM file conversion

133

64-bit UM Unified Model

Reconfiguration

64-bit UM

netCDF

xancil

32-bit PP

pptoanc

um-convpp

xconv

CF-netCDF

32-bit PP

cf-python Iris

netCDF

ff2pp

Tool Input Output

xancil netCDF UM (ancillary)

um-convpp UM PP (big-endian)

ff2pp UM (fieldsfile) PP (native-endian)

xconv UM, PP, netCDF, GRIB, Grads netCDF, Grads

cf-python UM, PP, netCDF CF-netCDF

Iris UM, PP, netCDF, GRIB CF-netCDF

Conversion tools

134

UM file tools

135

Tool Input Purpose

um-cumf UM Compares two files.
Can be used to check for NaNs in data.

um-pumf UM Prints header information.

uminfo UM Prints header information.

ppinfo PP Prints header information in a readable
format.

createBC UM Creates LBCs for limited area model.

Mule

• Python API for reading and writing UM format files.
• Set of utilities for manipulating UM files (replaces old UM utilities):

https://code.metoffice.gov.uk/doc/um/index.html
136

mule-cumf Compare files

mule-cutout Extract subregion from fixed resolution file

mule-fixframe Convert MakeBC frame to CreateBC frame

mule-pumf Pretty-print file headers

mule-select Copy selected fields

mule-summary List field lookup headers

mule-trim Extract fixed region from a variable grid

mule-unpack Unpack WGDOS packed files

https://code.metoffice.gov.uk/doc/um/index.html

Xancil

• Xancil provides a GUI for generating ancillary files from your
own data.

– Input data should be in NetCDF format.

– Supports the creation of standard atmosphere ancillary
files (and old UM ocean ancillary files).

– Allows the creation of custom ancillary files.

• Xancil can take command-line options.

– Complex workflows can be automated using tcl scripts.

137

138

Xconv

• Xconv is useful for quickly viewing the contents of a data file,
creating quick plots of fields, and viewing numerical data
entries directly.

• Reads UM, PP, netCDF, GRIB and Grads.

• Converts data to netCDF.

• Data manipulations available:
– Spectral to gridpoint
– Interpolation (bilinear or area-weighted)
– Conversion to and from rotated grids

139

140

Central Ancillary Program

• For creating standard ancillary files can use CAP
– Orography
– Land-sea mask
– Soil moisture, snow
– Vegetation
– Aerosol
– Sea surface temperature, sea-ice
– Ozone

• Typically used for running the LAM:
– Run as part of the nesting suite.

• Contact the CMS helpdesk for more information:
https://cms-helpdesk.ncas.ac.uk/

141

https://cms-helpdesk.ncas.ac.uk/

ANTS

ANcillary Tools and Suites

• Developed by the Met Office
• Based on Python and Iris
• Gradually replacing functionality of CAP

https://code.metoffice.gov.uk/trac/ancil

Contains:

• Set of applications to:
– Convert (Iris) data to ancillary files
– Derive standard ancillary fields e.g. land-sea mask,

vegetation etc
• Python tool kit for developing your own applications

142

https://code.metoffice.gov.uk/trac/ancil

Iris

Iris is a Python library for analysing and visualising
meteorological data sets.

With Iris you can:

• Use a single API to work on your data, irrespective of its
original format.

• Read and write (CF-)netCDF, GRIB 1&2, PP files and UM fields
files.

• Easily produce graphs and maps via integration with
matplotlib and cartopy.

Community tool developed at the Met Office:

 https://scitools-iris.readthedocs.io/en/latest/

143

https://scitools-iris.readthedocs.io/en/latest/

Availability of tools

• The UM file utilities (including mule) are available on
ARCHER2 and Monsoon under:
– $UMDIR/bin
– $UMDIR/vnX.Y/cce/utilities

• CMS-developed tools (xconv, xancil, cf-python, cf-plot) can be
downloaded to your own platform.

• Further information can be found through the CMS site:
https://cms.ncas.ac.uk/tools-and-utilities/

144

https://cms.ncas.ac.uk/tools-and-utilities/

jaspy

● Large collection of tools commonly used for atmospheric and Earth
observation science, including:
○ netCDF and nco tools
○ cf-python, cf-plot and Iris
○ R ...

• Installed on the JASMIN systems at CEDA

• Reproducible environments

https://help.jasmin.ac.uk/article/4729-jaspy-envs-py3-rhel6-rhel7
https://github.com/cedadev/jaspy-manager

145

https://help.jasmin.ac.uk/article/4729-jaspy-envs-py3-rhel6-rhel7
https://github.com/cedadev/jaspy-manager

University of Leeds, 7-9 February 2023

NCAS
Unified Model Introduction

Part 8: Finale

Before contacting the helpdesk

1. Always search the helpdesk before raising a query. You may find that

your query has already been answered.

2. On ARCHER2 please make your /home and /work directories readable

by the CMS team so that we can help with any queries.

chmod -R g+rX /home/n02/n02/<username>
chmod -R g+rX /work/n02/n02/<username>

When contacting the CMS Helpdesk please make sure you supply the

following information to help us answer your query more quickly.

– Cut and paste any error messages

– The id of the UM suite (e.g. u-aa774)

– The path to the log file containing the error.

147

UK UM support

• Through NCAS-CMS (National Centre for Atmospheric Science
– Computational Modelling Services):

http://cms.ncas.ac.uk

• Modelling helpdesk:

https://cms-helpdesk.ncas.ac.uk/

• Email contact:

cms-support@ncas.ac.uk

• Use the Helpdesk where possible (rather than emailing the
team directly).

148

http://cms.ncas.ac.uk/
https://cms-helpdesk.ncas.ac.uk/
mailto:cms-support@ncas.ac.uk

Other sources of support

ARCHER helpdesk: support@archer2.ac.uk

Monsoon helpdesk: monsoon@metoffice.gov.uk

149

Issue ARCHER2 Monsoon

New account CMS Monsoon

Over quota / budget run out CMS Monsoon

UM specific issues CMS CMS

Machine problems ARCHER2 Monsoon

mailto:support@archer.ac.uk
mailto:monsoon@metoffice.gov.uk

Other sources of information

• UM documentation is available on MOSRS:

https://code.metoffice.gov.uk/doc/um/latest/umdp.html

• Monsoon user guide.

https://code.metoffice.gov.uk/doc/monsoon2/index.html

• Collaboration twiki

https://gws-access.jasmin.ac.uk/public/mohc_shared/monsoon2/html

150

https://code.metoffice.gov.uk/doc/um/latest/umdp.html
https://code.metoffice.gov.uk/doc/monsoon2/index.html
https://gws-access.jasmin.ac.uk/public/mohc_shared/monsoon2/html

The CMS team
• Modelling support team:

– UM: David Case, Jeff Cole, Annette Osprey, Simon Wilson,
Rosalyn Hatcher, Grenville Lister

– UKCA: Luke Abraham

– Land surface: Patrick McGuire

• PUMA system:

– Andy Heaps

• Strategic projects:

– Valeriu Predoi, Marc Stringer (UKESM, ESMVAlTool)

– David Hassell, Andy Heaps, Sadie Bartholomew (cf-python/plot)

– Simon Wilson (NGMS)

– David Livings (Hydro-JULES)

– Jeff Cole (EXCALIBUR)
151

What CMS provides (i)

Machines and facilities:
• Computing time on ARCHER2
• Support for the UM on national HPC facility (ARCHER2) and Met

Office/NERC collaboration HPC service (Monsoon2).
• A common platform (PUMA) for UM submission.
• Support for the UM on local computing facilities (e.g. Mobilis, HPC

Wales).

Core activities:
• Training days and user meetings
• Documentation and information services
• Porting certain “standard” UM suites.

152

What CMS provides (ii)

Strategic projects:

• Development and support for visualisation and analysis tools
(xconv, xancil, cf-python, cfplot).

• Modelling support and development through collaborative
projects:

– For example: UKHiGEM, CASCADE, CLIMIP, High resolution
modelling, UKESM, SWAMMA, ParaCon.

• Future compute and storage technologies:

– Software defined storage

– Virtualisation and containerisation

153

Things to do next

• Register for an ARCHER2 or Monsoon2 account

• Finish working through the tutorial exercises:

• Find a suite that is similar to the one you want to run. Look at its
options and settings in the rose editor.

• Read the UM user guide:

https://code.metoffice.gov.uk/doc/um/latest/umdp.html#000

• Register for a JASMIN account:

http://help.ceda.ac.uk/article/189-get-started-with-jasmin

154

https://code.metoffice.gov.uk/doc/um/latest/umdp.html#000
http://help.ceda.ac.uk/article/189-get-started-with-jasmin

